Updated on 2023/12/03

写真a

 
SAKO Hiroki
 
Organization
Academic Assembly Institute of Science and Technology JOUHOU DENSHI KOUGAKU KEIRETU Associate Professor
Faculty of Engineering Department of Engineering Associate Professor
Title
Associate Professor
External link

Degree

  • Doctor (Matematical Science) ( 2010.3   The University of Tokyo )

Research Interests

  • Mathematics

Research Areas

  • Natural Science / Basic analysis

Research History (researchmap)

  • Niigata University   Associate Professor

    2014.9

      More details

    Country:Japan

    researchmap

Research History

  • Niigata University   Faculty of Engineering Department of Engineering   Associate Professor

    2017.4

  • Niigata University   Abolition organization Mathematical Information Division   Associate Professor

    2014.9 - 2017.3

 

Papers

  • Group Approximation in Cayley Topology and Coarse Geometry, Part II: Fibred Coarse Embeddings Reviewed

    Masato Mimura, Hiroki Sako

    Analysis and Geometry in Metric Spaces   7 ( 1 )   62 - 108   2019.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1515/agms-2019-0005

    researchmap

  • Group approximation in Cayley topology and coarse geometry Part Group approximation in Cayley topology and coarse geometry Part I: Coarse embeddings of amenable groups Reviewed

    Masato Mimura, Hiroki Sako

    Journal of Topology and Analysis   2019

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1142/S1793525320500089

    researchmap

  • Group approximation in cayley topology and coarse geometry, III: Geometric property (T)

    Masato Mimura, Narutaka Ozawa, Hiroki Sako, Yuhei Suzuki

    Algebraic and Geometric Topology   15 ( 2 )   1061 - 1091   2015.4

     More details

    Publishing type:Research paper (scientific journal)  

    In this series of papers, we study the correspondence between the following: (1) the large scale structure of the metric space ⊔m Cay (G (m) consisting of Cayley graphs of finite groups with k generators; (2) the structure of groups that appear in the boundary of the set {G (m)} in the space of k–marked groups. In this third part of the series, we show the correspondence among the metric properties “geometric property (T)”, “cohomological property (T)” and the group property “Kazhdan’s property (T)”. Geometric property .T/ of Willett–Yu is stronger than being expander graphs. Cohomological property .(T) is stronger than geometric property (T) for general coarse spaces.

    DOI: 10.2140/agt.2015.15.1067

    Scopus

    researchmap

 

Teaching Experience

  • 応用数理C

    2021
    Institution name:新潟大学

  • 関数解析的群論

    2020
    Institution name:新潟大学

  • 自然科学総論Ⅲ

    2020
    Institution name:新潟大学

  • 基礎数理B

    2018
    Institution name:新潟大学

  • 応用数理E

    2018
    -
    2019
    Institution name:新潟大学

  • 応用数理B

    2016
    Institution name:新潟大学

  • 平和を考えるB

    2016
    Institution name:新潟大学

  • 基礎数理A I

    2015
    Institution name:新潟大学

  • 基礎数理A II

    2015
    Institution name:新潟大学

  • 応用解析学特論

    2014
    Institution name:新潟大学

  • 応用数理C

    2014
    -
    2021
    Institution name:新潟大学

  • 力学系理論

    2014
    Institution name:新潟大学

▶ display all