Updated on 2024/05/04

写真a

 
SUGIYAMA Sayaka
 
Organization
Academic Assembly Institute of Medicine and Dentistry IGAKU KEIRETU Professor
Graduate School of Medical and Dental Sciences Biological Functions and Medical Control Regenerative and Transplant Medicine Professor
Title
Professor
External link

Degree

  • 博士(医学) ( 2001.3   東北大学 )

Research Interests

  • 臨界期

  • Parvalbumin

  • 包括脳ネットワーク

  • 可塑性

  • 眼優位性

  • homeoprotein

  • GABA

  • 視覚野

  • Otx2

Research Areas

  • Life Science / Neuroscience-general

Research History (researchmap)

  • Niigata University   Division of Developmental Physiology, Graduate School of Medical and Dental Sciences   Professor

    2022.4

      More details

  • Niigata University

    2014.4 - 2022.3

      More details

  • 新潟大学 医歯学系 神経発達研究室   テニュアトラック准教授(PI)

    2009.10 - 2014.3

      More details

  • Harvard University

    2006 - 2009

      More details

  • RIKEN   Researcher

    2005

      More details

  • RIKEN

    2002 - 2005

      More details

  • 東北大学加齢研 分子神経研究分野   JSPS特別研究員

    1999 - 2002

      More details

▶ display all

Research History

  • Niigata University   Regenerative and Transplant Medicine, Biological Functions and Medical Control, Graduate School of Medical and Dental Sciences   Professor

    2022.4

  • Niigata University   Institute of Medicine and Dentistry, Academic Assembly   Professor

    2022.4

  • Niigata University   Graduate School of Medical and Dental Sciences Biological Functions and Medical Control Sensory and Integrative Medicine   Associate Professor

    2014.4 - 2022.3

  • Niigata University   Headquarters for Strategy and Planning Office for Promoting the Cultivation of Young Researchers   Associate Professor

    2009.10 - 2014.3

Professional Memberships

Committee Memberships

  • 日本神経科学学会   電子ジャーナル検討委員  

    2015 - 2016   

      More details

    Committee type:Academic society

    researchmap

  • 日本神経科学学会   ダイバーシティ対応委員  

    2013.6   

      More details

    Committee type:Academic society

    researchmap

 

Papers

  • Coactosin Promotes F-Actin Protrusion in Growth Cones Under Cofilin-Related Signaling Pathway

    Xubin Hou, Motohiro Nozumi, Harukazu Nakamura, Michihiro Igarashi, Sayaka Sugiyama

    Frontiers in Cell and Developmental Biology   9   2021.6

     More details

    Publishing type:Research paper (scientific journal)   Publisher:Frontiers Media SA  

    During brain development, axon outgrowth and its subsequent pathfinding are reliant on a highly motile growth cone located at the tip of the axon. Actin polymerization that is regulated by actin-depolymerizing factors homology (ADF-H) domain-containing family drives the formation of lamellipodia and filopodia at the leading edge of growth cones for axon guidance. However, the precise localization and function of ADF-H domain-containing proteins involved in axon extension and retraction remain unclear. We have previously shown that transcripts and proteins of coactosin-like protein 1 (COTL1), an ADF-H domain-containing protein, are observed in neurites and axons in chick embryos. Coactosin overexpression analysis revealed that this protein was localized to axonal growth cones and involved in axon extension in the midbrain. We further examined the specific distribution of coactosin and cofilin within the growth cone using superresolution microscopy, structured illumination microscopy, which overcomes the optical diffraction limitation and is suitable to the analysis of cellular dynamic movements. We found that coactosin was tightly associated with F-actin bundles at the growth cones and that coactosin overexpression promoted the expansion of lamellipodia and extension of growth cones. Coactosin knockdown in oculomotor neurons resulted in an increase in the levels of the inactive, phosphorylated form of cofilin and dysregulation of actin polymerization and axonal elongation, which suggests that coactosin promoted axonal growth in a cofilin-dependent manner. Indeed, the application of a dominant-negative form of LIMK1, a downstream effector of GTPases, reversed the effect of coactosin knockdown on axonal growth by enhancing cofilin activity. Combined, our results indicate that coactosin functions promote the assembly of protrusive actin filament arrays at the leading edge for growth cone motility.

    DOI: 10.3389/fcell.2021.660349

    researchmap

  • Single-Cell Visualization Deep in Brain Structures by Gene Transfer Reviewed

    Sayaka Sugiyama, Junko Sugi, Tomoya Iijima, Xubin Hou

    Frontiers in Neural Circuits   14   2020.11

     More details

    Authorship:Lead author, Corresponding author   Publishing type:Research paper (scientific journal)   Publisher:Frontiers Media SA  

    DOI: 10.3389/fncir.2020.586043

    researchmap

  • Reciprocal connectivity between secondary auditory cortical field and amygdala in mice. Reviewed International journal

    Tsukano H, Hou X, Horie M, Kitaura H, Nishio N, Hishida R, Takahashi K, Kakita A, Takebayashi H, Sugiyama S, Shibuki K

    Scientific reports   9 ( 1 )   19610 - 19610   2019.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Recent studies have examined the feedback pathway from the amygdala to the auditory cortex in conjunction with the feedforward pathway from the auditory cortex to the amygdala. However, these connections have not been fully characterized. Here, to visualize the comprehensive connectivity between the auditory cortex and amygdala, we injected cholera toxin subunit b (CTB), a bidirectional tracer, into multiple subfields in the mouse auditory cortex after identifying the location of these subfields using flavoprotein fluorescence imaging. After injecting CTB into the secondary auditory field (A2), we found densely innervated CTB-positive axon terminals that were mainly located in the lateral amygdala (La), and slight innervations in other divisions such as the basal amygdala. Moreover, we found a large number of retrogradely-stained CTB-positive neurons in La after injecting CTB into A2. When injecting CTB into the primary auditory cortex (A1), a small number of CTB-positive neurons and axons were visualized in the amygdala. Finally, we found a near complete absence of connections between the other auditory cortical fields and the amygdala. These data suggest that reciprocal connections between A2 and La are main conduits for communication between the auditory cortex and amygdala in mice.

    DOI: 10.1038/s41598-019-56092-9

    PubMed

    researchmap

  • Experience-dependent transcriptional regulation in juvenile brain development. Reviewed

    Sakai A, Sugiyama S

    Development, growth & differentiation   60 ( 8 )   473 - 482   2018.10

  • Roles of CSGalNAcT1, a key enzyme in regulation of CS synthesis, in neuronal regeneration and plasticity. Reviewed International journal

    Michihiro Igarashi, Kosei Takeuchi, Sayaka Sugiyama

    Neurochemistry international   119   77 - 83   2018.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Chondroitin sulfate (CS) is a sulfated glycosaminoglycan composed of a long chain of repeating disaccharide units that are attached to core proteins, resulting in CS proteoglycans (CSPGs). In the mature brain, CS is concentrated in perineuronal nets (PNNs), which are extracellular structures that surround synapses and regulate synaptic plasticity. In addition, CS is rapidly synthesized after CNS injury to create a physical and chemical barrier that inhibits axon growth. Most previous studies used a bacterial CS-degrading enzyme to investigate the physiological roles of CS. Recent studies have shown that CS is synthesized by more than 15 enzymes, all of which have been characterized in vitro. Here we focus on one of those enzymes, CSGalNAcT1 (T1). We produced T1 knockout mice (KO), which show extensive axon regeneration following spinal cord injury, as well as the loss of onset of ocular dominance plasticity. These results from T1KO mice suggest important roles for extracellular CS in the brain regarding neuronal plasticity and axon regeneration.

    DOI: 10.1016/j.neuint.2017.10.001

    PubMed

    researchmap

  • Chondroitin Sulfate Is Required for Onset and Offset of Critical Period Plasticity in Visual Cortex Reviewed

    Xubin Hou, Nozomu Yoshioka, Hiroaki Tsukano, Akiko Sakai, Shinji Miyata, Yumi Watanabe, Yuchio Yanagawa, Kenji Sakimura, Kosei Takeuchi, Hiroshi Kitagawa, Takao K. Hensch, Katsuei Shibuki, Michihiro Igarashi, Sayaka Sugiyama

    SCIENTIFIC REPORTS   7 ( 1 )   12646   2017.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:NATURE PUBLISHING GROUP  

    Ocular dominance plasticity is easily observed during the critical period in early postnatal life. Chondroitin sulfate (CS) is the most abundant component in extracellular structures called perineuronal nets (PNNs), which surround parvalbumin-expressing interneurons (PV-cells). CS accumulates in PNNs at the critical period, but its function in earlier life is unclear. Here, we show that initiation of ocular dominance plasticity was impaired with reduced CS, using mice lacking a key CS-synthesizing enzyme, CSGalNAcT1. Two-photon in vivo imaging showed a weaker visual response of PV-cells with reduced CS compared to wild-type mice. Plasticity onset was restored by a homeoprotein Otx2, which binds the major CS-proteoglycan aggrecan and promotes its further expression. Continuous CS accumulation together with Otx2 contributed bidirectionally to both onset and offset of plasticity, and was substituted by diazepam, which enhances GABA function. Therefore, CS and Otx2 may act as common inducers of both onset and offset of the critical period by promoting PV-cell function throughout the lifetime.

    DOI: 10.1038/s41598-017-04007-x

    Web of Science

    PubMed

    researchmap

  • Genome-Wide Target Analyses of Otx2 Homeoprotein in Postnatal Cortex Reviewed

    Akiko Sakai, Ryuichiro Nakato, Yiwei Ling, Xubin Hou, Norikazu Hara, Tomoya Iijima, Yuchio Yanagawa, Ryozo Kuwano, Shujiro Okuda, Katsuhiko Shirahige, Sayaka Sugiyama

    FRONTIERS IN NEUROSCIENCE   11   2017.5

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:FRONTIERS MEDIA SA  

    Juvenile brain has a unique time window, or critical period, in which neuronal circuits are remodeled by experience. Mounting evidence indicates the importance of neuronal circuit rewiring in various neurodevelopmental disorders of human cognition. We previously showed that Otx2 homeoprotein, essential for brain formation, is recaptured during postnatal maturation of parvalbumin positive interneurons (PV cells) to activate the critical period in mouse visual cortex. Cortical Otx2 is the only interneuron-enriched transcription factor known to regulate the critical period, but its downstream targets remain unknown. Here, we used ChIP-seq (chromatin immunoprecipitation sequencing) to identify genome-wide binding sites of Otx2 in juvenile mouse cortex, and interneuron-specific RNA-seq to explore the Otx2-dependent transcriptome. Otx2-bound genes were associated with human diseases such as schizophrenia as well as critical periods. Of these genes, expression of neuronal factors involved in transcription, signal transduction and mitochondria' function was moderately and broadly affected in Otx2-deficient interneurons. In contrast to reported binding sites in the embryo, genes encoding potassium ion transporters such as K(v)3.1 had juvenile cortex-specific binding sites, suggesting that Otx2 is involved in regulating fast-spiking properties during PV cell maturation. Moreover, transcripts of oxidative resistance-1 (Oxr1), whose promoter has Otx2 binding sites, were markedly downregulated in Otx2 deficient interneurons. Therefore, an important role of Otx2 may be to protect the cells from the increased oxidative stress in fast-spiking PV cells. Our results suggest that coordinated expression of Otx2 targets promotes PV cell maturation and maintains its function in neuronal plasticity and disease.

    DOI: 10.3389/fnins.2017.00307

    Web of Science

    researchmap

  • Associative-memory representations emerge as shared spatial patterns of theta activity spanning the primate temporal cortex Reviewed

    Kiyoshi Nakahara, Ken Adachi, Keisuke Kawasaki, Takeshi Matsuo, Hirohito Sawahata, Kei Majima, Masaki Takeda, Sayaka Sugiyama, Ryota Nakata, Atsuhiko Iijima, Hisashi Tanigawa, Takafumi Suzuki, Yukiyasu Kamitani, Isao Hasegawa

    NATURE COMMUNICATIONS   7   11827   2016.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:NATURE PUBLISHING GROUP  

    Highly localized neuronal spikes in primate temporal cortex can encode associative memory; however, whether memory formation involves area-wide reorganization of ensemble activity, which often accompanies rhythmicity, or just local microcircuit-level plasticity, remains elusive. Using high-density electrocorticography, we capture local-field potentials spanning the monkey temporal lobes, and show that the visual pair-association (PA) memory is encoded in spatial patterns of theta activity in areas TE, 36, and, partially, in the parahippocampal cortex, but not in the entorhinal cortex. The theta patterns elicited by learned paired associates are distinct between pairs, but similar within pairs. This pattern similarity, emerging through novel PA learning, allows a machine-learning decoder trained on theta patterns elicited by a particular visual item to correctly predict the identity of those elicited by its paired associate. Our results suggest that the formation and sharing of widespread cortical theta patterns via learning-induced reorganization are involved in the mechanisms of associative memory representation.

    DOI: 10.1038/ncomms11827

    Web of Science

    PubMed

    researchmap

  • Coactosin accelerates cell dynamism by promoting actin polymerization Reviewed

    Xubin Hou, Tatsuya Katahira, Kazumasa Ohashi, Kensaku Mizuno, Sayaka Sugiyama, Harukazu Nakamura

    DEVELOPMENTAL BIOLOGY   379 ( 1 )   53 - 63   2013.7

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:ACADEMIC PRESS INC ELSEVIER SCIENCE  

    During development, cells dynamically move or extend their processes, which are achieved by actin dynamics. In the present study, we paid attention to Coactosin, an actin binding protein, and studied its role in actin dynamics. Coactosin was associated with actin and Capping protein in neural crest cells and N1E-115 neuroblastoma cells. Accumulation of Coactosin to cellular processes and its association with actin filaments prompted us to reveal the effect of Coactosin on cell migration. Coactosin overexpression induced cellular processes in cultured neural crest cells. In contrast, knock-down of Coactosin resulted in disruption of actin polymerization and of neural crest cell migration. Importantly, Coactosin was recruited to lamellipodia and filopodia in response to Rac signaling, and mutated Coactosin that cannot bind to F-actin did not react to Rac signaling, nor support neural crest cell migration. It was also shown that deprivation of Rac signaling from neural crest cells by dominant negative Rac1 (DN-Rac1) interfered with neural crest cell migration, and that co-transfection of DN-Rac1 and Coactosin restored neural crest cell migration. From these results we have concluded that Coactosin functions downstream of Rac signaling and that it is involved in neurite extension and neural crest cell migration by actively participating in actin polymerization. (C) 2013 Elsevier Inc. All rights reserved.

    DOI: 10.1016/j.ydbio.2013.04.006

    Web of Science

    PubMed

    researchmap

  • Otx2 Binding to Perineuronal Nets Persistently Regulates Plasticity in the Mature Visual Cortex Reviewed

    Marine Beurdeley, Julien Spatazza, Henry H. C. Lee, Sayaka Sugiyama, Clemence Bernard, Ariel A. Di Nardo, Takao K. Hensch, Alain Prochiantz

    JOURNAL OF NEUROSCIENCE   32 ( 27 )   9429 - 9437   2012.7

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:SOC NEUROSCIENCE  

    Specific transfer of (orthodenticle homeobox 2) Otx2 homeoprotein into GABAergic interneurons expressing parvalbumin (PV) is necessary and sufficient to open, then close, a critical period (CP) of plasticity in the developing mouse visual cortex. The accumulation of endogenous Otx2 in PV cells suggests the presence of specific Otx2 binding sites. Here, we find that perineuronal nets (PNNs) on the surfaces of PV cells permit the specific, constitutive capture of Otx2. We identify a 15 aa domain containing an arginine-lysine doublet(RK peptide) within Otx2, bearing prototypic traits of a glycosaminoglycan (GAG) binding sequence that mediates Otx2 binding to PNNs, and specifically to chondroitin sulfate D and E, with high affinity. Accordingly, PNN hydrolysis by chondroitinase ABC reduces the amount of endogenous Otx2 in PV cells. Direct infusion of RK peptide similarly disrupts endogenous Otx2 localization to PV cells, reduces PV and PNN expression, and reopens plasticity in adult mice. The closure of one eye during this transient window reduces cortical acuity and is specific to the RK motif, as an Alanine-Alanine variant or a scrambled peptide fails to reactivate plasticity. Conversely, this transient reopening of plasticity in the adult restores binocular vision in amblyopic mice. Thus, one function of PNNs is to facilitate the persistent internalization of Otx2 by PV cells to maintain CP closure. The pharmacological use of the Otx2 GAG binding domain offers a novel, potent therapeutic tool with which to restore cortical plasticity in the mature brain.

    DOI: 10.1523/JNEUROSCI.0394-12.2012

    Web of Science

    PubMed

    researchmap

  • From brain formation to plasticity: Insights on Otx2 homeoprotein Reviewed

    Sayaka Sugiyama, Alain Prochiantz, Takao K. Hensch

    DEVELOPMENT GROWTH & DIFFERENTIATION   51 ( 3 )   369 - 377   2009.4

     More details

    Language:English   Publisher:WILEY-BLACKWELL PUBLISHING, INC  

    The shaping of neuronal circuits is essential during postnatal brain development. A window of neuronal remodeling by sensory experience typically occurs during a unique time in early life. The many types of behavior and perception, like human language, birdsong, hearing and vision are refined by experience during these distinct 'critical periods'. The onset of critical periods for vision is delayed in animals that remain in complete darkness from birth. It is then predicted that a 'messenger' within the visual pathway signals the amount of sensory experience that has occurred. Our recent results indicate that Otx2 homeoprotein, an essential morphogen for embryonic head formation, is reused later in life as this 'messenger' for critical period plasticity. The homeoprotein is stimulated by visual experience to propagate into the visual cortex, where it is internalized by GABAergic interneurons, especially Parvalbumin-positive cells (PV-cells). Otx2 promotes the maturation of PV-cells, consequently activating critical period onset in the visual cortex. Here, we discuss recent data that are beginning to illuminate the physiological function of non-cell autonomous homeoproteins, as well as the restriction of their transfer to PV-cells in vivo.

    DOI: 10.1111/j.1440-169X.2009.01093.x

    Web of Science

    PubMed

    researchmap

  • Clonal and widespread gene transfer by proviral electroporation for analysis of brain laminar formation Reviewed

    Sayaka Sugiyama, Harukazu Nakamura

    Electroporation and Sonoporation in Developmental Biology   117 - 127   2009

     More details

    Language:English   Publishing type:Part of collection (book)   Publisher:Springer Japan  

    An essential approach to understanding the mechanisms of development is to alter a gene function/expression. In vivo electroporation has been adapted as one such technique (Muramatsu et al., 1997). It is a very useful tool to achieve a gain- and loss-of-function (by using RNAi or morpholinos) of a gene of interest (Funahashi et al., 1999
    Fukuchi-Shimogori and Grove, 2001
    Kos et al., 2001
    Katahira and Nakamura, 2003
    Sugiyama and Nakamura, 2003). The technique has allowed the altering of gene expression temporally and spatially. Pulse-labeling technique is an approach to manipulate a specific cell population temporally, depending on its birthday, as this chapter describes. This technique is more advantageous over the BrdU application, as it can reveal cell lineage
    it also has the ability to manipulate a gain- and loss-of-function into specific precursor cells (Tabata and Nakajima, 2001
    Sugiyama and Nakamura, 2003
    Huber et al., 2008). In spatial terms, widespread gene transfer by electroporation has provided an efficient way to unveil a new gene function on a given tissue (Nakamura and Funahashi, 2001). On the other hand, the spatial precision of gene transfer also has been addressed as each individual cell responds differently to gene expression. Thus, there has been increasing efforts to improve electrodes and create new techniques such as single-cell electroporation (Haas et al., 2001
    Kitamura et al., 2008). © 2009 Springer Japan.

    DOI: 10.1007/978-4-431-09427-2_12

    Scopus

    researchmap

  • Experience-dependent transfer of Otx2 homeoprotein into the visual cortex activates postnatal plasticity Reviewed

    Sayaka Sugiyama, Ariel A. Di Nardo, Shinichi Aizawa, Isao Matsuo, Michel Volovitch, Alain Prochiantz, Takao K. Hensch

    CELL   134 ( 3 )   508 - 520   2008.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:CELL PRESS  

    Neural circuits are shaped by experience in early postnatal life. Distinct GABAergic connections within visual cortex determine the timing of the critical period for rewiring ocular dominance to establish visual acuity. We find that maturation of the parvalbumin (PV)-cell network that controls plasticity onset is regulated by a selective re-expression of the embryonic Otx2 homeoprotein. Visual experience promoted the accumulation of non-cell-autonomous Otx2 in PV-cells, and cortical infusion of exogenous Otx2 accelerated both PV-cell development and critical period timing. Conversely, conditional removal of Otx2 from non-PV cells or from the visual pathway abolished plasticity. Thus, the experience-dependent transfer of a homeoprotein may establish the physiological milieu for postnatal plasticity of a neural circuit.

    DOI: 10.1016/j.cell.2008.05.054

    Web of Science

    PubMed

    CiNii Article

    researchmap

  • Polarity and laminar formation of the optic tectum in relation to retinal projection Reviewed

    H Nakamura, S Sugiyama

    JOURNAL OF NEUROBIOLOGY   59 ( 1 )   48 - 56   2004.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:JOHN WILEY & SONS INC  

    The mes-metencephalic boundary (isthmus) works as an organizer for the tectum, and the organizing molecule may be Fgf8. The region where Otx2, En1, and Pax2 are expressed overlappingly may differentiate into the mesencephalon. The di-mesencephalic and mes-metencephalic boundaries are determined by repressive interaction of Pax6 and En1/Pax2 and of Otx2 and Gbx2, respectively. The optic tectum is a visual center in lower vertebrates. The tectum and the retina should be regionalized and be positionally specialized for the proper retinotopic projection. Gradient of En2 plays a crucial role in rostrocaudal polarity formation of the tectum. En2 confers caudal characteristics of the retina by inducing ephrinA2 and A5, which are the repellant molecules for the growth cones of temporal retinal ganglion cells. Grg4 antagonizes the isthmus-related genes, and is involved in the formation of di-mesencephalic boundary and tectal polarity formation at an early phase of development. Then, Grg4 plays a role in tectal laminar formation by controlling the migration pathway. Migration pathway of tectal postmitotic cells changes after E5. The late migratory cells split the early migratory neurons to form laminae h-j of SGFS. Grg4 is expressed in the ventricular layer after E5, and forces postmitotic cells to follow the late migratory pathway, though retinal fibers terminate at laminae a-f of SGFS. Misexpression of Grg4 disrupts the lamina g, and in such tecta retinal arbors invade deep into the tectal layer, indicating that lamina g is a nonpermissive lamina for the retinal arbors. (C) 2004 Wiley Periodicals, Inc.

    DOI: 10.1002/neu.10339

    Web of Science

    PubMed

    researchmap

  • The role of Grg4 in tectal laminar formation Reviewed

    S Sugiyama, H Nakamura

    DEVELOPMENT   130 ( 3 )   451 - 462   2003.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:COMPANY OF BIOLOGISTS LTD  

    Mature chick optic tecta consist of 16 laminae and receive retinal fiber projections in a precise retinotopic manner. Retinal axons arborize in laminae a-f of the SGFS, but do not cross the border between lamina f and g. In order to elucidate molecular mechanisms of tectal laminar formation, we first looked at the migration of tectal postmitotic cells. We found that the migration pattern of postmitotic cells changes around E5 and that late migratory cells intervened laminae that were formed by early migratory cells. The coincident appearance of Grg4 expression in the tectal ventricular layer and the change in migration pattern suggested an important role for Grg4. 451 Clonal misexpression of Grg4 resulted in cells migrating to laminae h-j of the SGFS. Massive misexpression of Grg4 resulted in disruption of laminae that were formed by early migratory cells, in particular lamina g of the SGFS. Application of Grg4 morpholino antisense oligonucleotide or the misexpression of a dominant-negative form of Grg4 exerted the opposite effect. We concluded that Grg4 may direct tectal postmitotic cells to follow a late migratory pathway.

    DOI: 10.1242/dev.00232

    Web of Science

    PubMed

    CiNii Article

    researchmap

  • Antagonizing activity of chick Grg4 against tectum-organizing activity Reviewed

    S Sugiyama, J Funahashi, H Nakamura

    DEVELOPMENTAL BIOLOGY   221 ( 1 )   168 - 180   2000.5

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:ACADEMIC PRESS INC  

    Alar plate of chick mesencephalon differentiates into the optic tectum. It has been shown that factors expressed in the mes-metencephalic boundary induce the tectum and give positional specificity. Chick Grg4 is expressed at first in the anterior neural fold. The expression localizes from the posterior diencephalon to the mesencephalon by stage 10. To investigate the function of Grg4 in mesencephalic development, Grg4 overexpression was carried out by in ovo electroporation. After Grg4 overexpression, expression of En-2, Pax5, Fgf8, and EphrinA2 was repressed, and Pax6 was upregulated in the mesencephalic region. Grg4 overexpression caused the morphological change; mesencephalic swelling became smaller and the di-mesencephalic boundary shifted posteriorly, that is, the anterior limit of tectum shifted posteriorly. Importantly, cotransfection of Grg4 with Pax5 canceled the tectum-inducing activity of Pax5. These results suggest that Grg4 works as an antagonist against tectum-organizing activity. It was also shown that transfected N-terminal domains of Grg4 induced En-2 expression. Since N-terminal domains were transported to the nucleus in the neuroepithelium, they could act as dominant negative for endogenous Grg4. These results indicate that Grg4 has repressing activity against the organizing molecules and suggest that Grg4 plays important roles in formation of anterior tectal boundary and polarity. (C) 2000 Academic Press.

    DOI: 10.1006/dbio.2000.9643

    Web of Science

    PubMed

    CiNii Article

    researchmap

  • Interaction between Otx2 and Gbx2 defines the organizing center for the optic tectum Reviewed

    T Katahira, T Sato, S Sugiyama, T Okafuji, Araki, I, J Funahashi, H Nakamura

    MECHANISMS OF DEVELOPMENT   91 ( 1-2 )   43 - 52   2000.3

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:ELSEVIER SCIENCE BV  

    Otx2 is expressed in the mesencephalon and prosencephalon, and Gbx2 is expressed in the rhombencephalon around stage 10. Loss-of-function studies of these genes in mice have revealed that Otx2 is indispensable for the development of the anterior brain segment, and that Gbx2 is required for the development of the isthmus. We carried out gain-of-function experiments of these genes in chick embryos with a newly developed gene transfer system, in ovo electroporation. When Otx2 was ectopically expressed caudally beyond the midbrain-hindbrain boundary (MHB), the alar plate of the metencephalon differentiated into the optic tectum instead of differentiating into the cerebellum. On the other hand, when Gbx2 was ectopically expressed at the mesencephalon, the caudal limit of the tectum shifted rostrally. We looked at the effects of misexpression on the isthmus- and tectum-related molecules. Otx2 and Gbx2 interacted to repress each other's expression. Ectopic Otx2 and Gbx2 repressed endogenous expression of Fgf8 in the isthmus, but induced Fgf8 expression at the interface between Otx2 and Gbx2 expression. Thus, it is suggested that interaction between Otx2 and Gbx2 determines the site of Fgf8 expression and the posterior limit of the tectum. (C) 2000 Elsevier Science Ireland Ltd. All rights reserved.

    DOI: 10.1016/S0925-4773(99)00262-2

    Web of Science

    PubMed

    researchmap

  • Apical ectodermal ridge induction by the transplantation of En-1-overexpressing ectoderm in chick limb bud Reviewed

    M Tanaka, Y Shigetani, S Sugiyama, K Tamura, H Nakamura, H Ide

    DEVELOPMENT GROWTH & DIFFERENTIATION   40 ( 4 )   423 - 429   1998.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:BLACKWELL SCIENCE  

    In the early chick embryo, the dorsal-ventral (DV) boundary organizes the apical ectodermal ridge (AER) structure in the limb bud field. Here it is reported that Engrailed-1 (En-l), a homolog of the Drosophila segment polarity gene engrailed expressed in the ventral limb ectoderm, participates in AER formation at the DV boundary of the limb bud. Restricted ectopic expression of En-1 in the dorsal side of the limb bud by transplantation of En-1-overexpressing ectoderm induces ectopic AER at the boundary of En-1-positive and -negative cells. The results suggest that En-1 is involved in AER formation at the DV boundary of the limb bud.

    DOI: 10.1046/j.1440-169X.1998.t01-2-00007.x

    Web of Science

    CiNii Article

    researchmap

  • Crossregulation between En-2 and Wnt-1 in chick tectal development Reviewed

    S Sugiyama, J Funahashi, J Kitajewski, H Nakamura

    DEVELOPMENT GROWTH & DIFFERENTIATION   40 ( 2 )   157 - 166   1998.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:BLACKWELL SCIENCE  

    En-1, En-2 and Wnt-1 are proposed to be essential signals for the development of the optic tectum in chick embryos. Drosophila engrailed and wingless, homologs of En (En-1 and En-2) and Wnt-1, respectively, have been shown to crossregulate each other. In the present paper, it is reported that crossregulation between En-2 and Wnt-1 is preserved in the development of the chick optic tectum. When En-2 is overexpressed by the replication competent retroviral vector, Wnt-1 is expressed ectopically at the dorsal midline of the diencephalon. When Wnt-1 is introduced extrinsically either by ectopic transplantation of mesencephalon, or by implantation of Wnt-1 producing cells, En-2 is induced ectopically at the dorsal midline of the tel-diencephalic border. Thus, ectopic expression of En-2 and Wnt-1 leads to crossregulation of each other in the chick brain. As diencephalon transdifferentiates into the optic tectum by an appropriate signal, the crossregulation of En-2 and Wnt-1 in the diencephalon may mimic the relationship required for early development in the tectum.

    DOI: 10.1046/j.1440-169X.1998.00005.x

    Web of Science

    researchmap

▶ display all

Books

  • 分子脳科学: 分子から脳機能と心に迫る (DOJIN BIOSCIENCE)

    杉山清佳, 三品 昌美( Role: Contributor ,  第23章 脳発達の臨界期)

    化学同人  2015.4  ( ISBN:4759815198

     More details

    Total pages:291  

    ASIN

    researchmap

  • Electroporation and Sonoporation in Developmental Bilogy

    Sugiyama S, Nakamura H, Nakamura Harukazu( Role: Contributor ,  Clonal and widespread gene transfer by proviral electroporation for analysis of brain laminar formation)

    Springer  2009.4  ( ISBN:4431094261

     More details

    Total pages:364  

    ASIN

    researchmap

MISC

  • 弱視の臨界期に関する最近の知見

    杉山清佳, 侯旭濱

    眼科   61 ( 1 )   2019.1

     More details

  • ドーパミン作動性細胞に発現するOtx2の恐怖記憶における役割

    飯島 友也, 杉山 清佳

    新潟医学会雑誌   132 ( 2 )   49 - 59   2018.2

     More details

    Language:Japanese   Publisher:新潟医学会  

    researchmap

  • Mechanism of critical period : understanding brain plasticity in childhood

    酒井 晶子, 杉山 清佳

    生体の科学   68 ( 1 )   54 - 58   2017.1

     More details

    Language:Japanese   Publisher:金原一郎記念医学医療振興財団 ; 1949-  

    CiNii Article

    CiNii Books

    researchmap

  • 臨界期

    杉山清佳

    脳科学辞典 DOI:10.14931/bsd.6426   2015

     More details

  • 【弱視研究の最先端】 弱視の臨界期メカニズム ホメオ蛋白質と糖鎖の新しい役割

    杉山 清佳

    神経眼科   29 ( 4 )   396 - 403   2012.12

     More details

    Language:Japanese   Publisher:日本神経眼科学会  

    researchmap

  • New Insights for Otx2 Homeoprotein in Cerebral Plasticity

    Sugiyama Sayaka

    新潟医学会雑誌   125 ( 4 )   175 - 179   2011.4

     More details

    Language:Japanese   Publisher:新潟医学会  

    CiNii Article

    CiNii Books

    researchmap

  • Isthmus organizer: regulation of cellebelar and tectal development

    53 ( 4 )   373 - 378   2008.3

     More details

  • 中脳領域の特異化 (特集 脳の発達に関与する分子機構)

    杉山清佳, 仲村春和

    生体の科学   52 ( 3 )   177 - 181   2001.5

     More details

    Language:Japanese   Publisher:金原一郎記念医学医療振興財団  

    DOI: 10.11477/mf.2425902265

    CiNii Article

    researchmap

  • 【小児神経学の最近の話題】 神経系の分化と発達 脳の形態形成

    杉山 清佳, 仲村 春和

    Clinical Neuroscience   17 ( 3 )   254 - 257   1999.3

     More details

    Language:Japanese   Publisher:(株)中外医学社  

    researchmap

  • ニワトリ胚中脳後側に強く発現する遺伝子Wnt-1とEnの相互作用

    杉山 清佳

    加齢医学研究所雑誌   48 ( 2 )   115 - 115   1997.3

     More details

    Language:Japanese   Publisher:東北大学加齢医学研究所  

    researchmap

  • ニワトリ胚中脳の吻尾極性に関わる遺伝子カスケードの解析

    舟橋 淳一, 杉山 清佳, 原 知永, 仲村 春和

    日本分子生物学会年会プログラム・講演要旨集   19   673 - 673   1996.8

     More details

▶ display all

Presentations

  • 弱視の臨界期の分子メカニズム

    杉山清佳

    第122回日本眼科学会総会  2018 

     More details

  • Dendritic organization of cortical interneurons in anticipation of postnatal plasticity

    Sayaka Sugiyama

    The 41th Annual Meeting of the Japan Neuroscience Society  2018 

     More details

    Presentation type:Symposium, workshop panel (public)  

    researchmap

  • 視覚経験による個性的回路の創出機構

    杉山清佳

    次世代脳プロジェクト 冬のシンポジウム  2017 

     More details

  • Transcriptional regulation of homeoprotein in postnatal cortical plasticity.

    Sayaka Sugiyama

    The 40th Annual Meeting of the Japan Neuroscience Society  2017 

     More details

  • Experience-dependent maturation of inhibitory circuits in ocular dominance plasticity.

    Sayaka Sugiyama

    The 39th Annual Meeting of the Japan Neuroscience Society.  2016 

     More details

  • Ocular dominance plasticity regulated by Otx2-inducible molecules.

    Sayaka Sugiyama

    The 58th Annual Meeting of the Japan Society for Neurochemistry  2015 

     More details

  • Inhibitory maturation regulates the critical period plasticity for binocular vision.

    Sayaka Sugiyama

    The 120th Annual Meeting of the Japanese Association of Anatomists  2015 

     More details

  • コンドロイチン硫酸による量依存的な臨界期制御

    杉山清佳

    第38回日本分子生物学会年会  2015 

     More details

  • コンドロイチン硫酸とホメオ蛋白質による臨界期制御

    杉山清佳

    第87回日本生化学会大会  2014 

     More details

  • 臨界期のメカニズム-経験依存の回路形成-

    杉山清佳

    第38回峠の会(形態学セミナー)  2014 

     More details

  • コンドロイチン硫酸による抑制性ニューロンの機能発達と臨界期制御

    杉山清佳

    第57回日本神経化学会大会  2014 

     More details

  • 臨界期の時期を制御する分子たち

    杉山清佳

    第18回視覚科学フォーラム 特別企画シンポジウム  2014 

     More details

  • 臨界期の分子メカニズム-モデル動物からの知見-

    杉山清佳

    第69回日本弱視斜視学会総会  2013 

     More details

  • 臨界期におけるホメオ蛋白質の新しい役割

    杉山清佳

    東北大学脳センターシンポジューム  2013 

     More details

  • Otx2 binding to sugar chains regulates plasticity in mouse visual cortex.

    Sayaka Sugiyama

    NIG workshop: Circuit construction in the mammalian cerebral cortex  2012 

     More details

  • Interaction of Otx2 and glycosaminoglycan regulates cortical plasticity for binocular vision.

    Sayaka Sugiyama

    The 35th Annual Meeting of the Japan Neuroscience Society  2012 

     More details

▶ display all

Awards

  • 女性研究者サイエンスグラント賞

    2018.7   資生堂  

    杉山清佳

     More details

  • 第一回女性研究者賞

    2013.11   ソロプチミスト日本財団  

    杉山清佳

     More details

Research Projects

  • 経験による大脳抑制性ニューロンの形態形成と機能分化メカニズムの解析

    2019.4 - 2023.3

    System name:基盤研究B

    Awarding organization:科学研究費補助金

    杉山清佳

      More details

    Authorship:Principal investigator  Grant type:Competitive

    researchmap

  • ホメオ蛋白質の移動原理と新たな効能の探究

    2018.4 - 2020.3

    System name:挑戦的研究(萌芽)

    Awarding organization:科学研究費補助金

    杉山清佳

      More details

    Authorship:Principal investigator  Grant type:Competitive

    researchmap

  • 視覚経験による個性的回路の創出機構

    2017.4 - 2019.3

    System name:新学術領域研究

    Awarding organization:科学研究費補助金

    杉山清佳

      More details

    Authorship:Principal investigator  Grant type:Competitive

    researchmap

  • ホメオ蛋白質による臨界期の分子メカニズムの解析

    2014.4 - 2017.3

    System name:基盤研究C

    Awarding organization:科学研究費補助金

    杉山清佳

      More details

    Authorship:Principal investigator  Grant type:Competitive

    researchmap

  • アクチン再構築による臨界期制御メカニズムの解析

    2014.4 - 2016.3

    System name:外国人特別研究員奨励費

    Awarding organization:科学研究費補助金

    杉山清佳

      More details

    Authorship:Principal investigator  Grant type:Competitive

    researchmap

  • 経験が脳の発達を促すメカニズム

    2011.3 - 2014.3

    System name:最先端次世代研究開発支援プログラム

    Awarding organization:日本学術振興会

    杉山清佳

      More details

    Authorship:Principal investigator  Grant type:Competitive

    researchmap

  • 臨界期を制御するホメオ蛋白質の新しい役割

    2010.10 - 2011.3

    System name:さきがけ

    Awarding organization:科学技術振興機構

    杉山清佳

      More details

    Authorship:Principal investigator  Grant type:Competitive

    researchmap

  • 臨界期可塑性におけるホメオ蛋白質の作用機構

    Grant number:22700330

    2010

    System name:科学研究費助成事業

    Research category:若手研究(B)

    Awarding organization:日本学術振興会

    杉山 清佳

      More details

    Grant amount:\3900000 ( Direct Cost: \3000000 、 Indirect Cost:\900000 )

    幼年期の脳には、個々の経験に応じて、集中的に回路網を作る「臨界期」がある。臨界期の経験に応じて、知覚や母国語の習得にまつわる回路網が形成され、個性として生涯維持されると考えられる。なぜ臨界期は若い脳に現れ、大人の脳に現れないのか。本研究は、マウスの視覚をモデルに、臨界期のメカニズムを明らかにすることを大きな目的としている。これまでに、胎生期に脳をつくるホメオ蛋白質が、幼年期に視覚の臨界期を誘導することが明らかとなった。Otx2ホメオ蛋白質は、大脳皮質の抑制性介在ニューロン(PV細胞)の発達を促し、臨界期を制御する。胎生期の研究から、ホメオ蛋白質は転写だけでなく翻訳も制御することが示唆されている。生後の脳においても、ホメオ蛋白質は経験に応じて遺伝子発現カスケードを導き、臨界期の分子環境を体系的に整える可能性がある。まだプレリミナリーデータではあるが、Otx2の標的候補遺伝子、アクチン結合蛋白質Coactosinについて興味深い結果が出始めている。Coactosinは、アクチンの脱重合を抑制し、安定化する働きを持つことが示唆されている。一方、」pubmed検索結果が2ページほどの未知分子であり、生後脳における働きは全く分かっていない。ごく最近、Otx2変異マウスを用い、臨界期視覚野からのウエスタンブロットを行ったところ、Coactosinの発現がOtx2変異マウスで顕著に減少していることが分かった。そこで、臨界期前後の視覚野におけるCoactosinの局在を抗体染色により解析すると、生後齢にともなって発現が増加するのが観察された。特に、成体の視覚野において、CoactosinはPV細胞に強く局在しており、Otx2蛋白質との共存が示唆された。これらの結果は、Otx2がCoactosinを介してPV細胞の細胞内骨格を制御する可能性を推測させる。

    researchmap

  • マウス眼優位可塑性に関与するOtx2蛋白質の作用機構の解析

    Grant number:17700321

    2005 - 2006

    System name:科学研究費助成事業

    Research category:若手研究(B)

    Awarding organization:日本学術振興会

    杉山 清佳

      More details

    Grant amount:\3600000 ( Direct Cost: \3600000 )

    これまでの研究により、視覚経験に依存してOtx2蛋白質が視覚野のParvalbumin(PV)陽性細胞に局在すること、またOtx2蛋白質を早期に視覚野へ導入すると、PV陽性細胞において機能分子の発現が促進し、臨界期が早期に誘導されることを明らかにしてきた。一方で、Otx2蛋白質が欠如した視覚野において臨界期が誘導されるか否かは不明であった。
    そこで今年度は、Otx2変異マウス(Tian et al., 2002)と、CaMKIIプロモーター制御下でCreを発現するマウス(Minichiello et al., 1999)を掛け合わせ、Otx2コンディショナルノックアウトマウスを作成した。このマウスでは生後多くの脳細胞においてOtx2遺伝子が欠損するが、PV陽性細胞では正常なまま保たれる。すなわち、Ots2蛋白質が細胞外からPV陽性細胞に取り込まれるのであれば、このマウスにおいて視覚野のOtx2蛋白質は欠如することが期待される。予測どおり、コンディショナルマウスにおいてOtx2蛋白質はPV陽性細胞に検出されないことから、視覚経路上の組織に発現したOtx2蛋白質が視覚野のPV陽性細胞に取り込まれることが示唆された。さらに、臨界期に顕著に見られる眼優位可塑性の有無をin vivo単一細胞記録法を用いて解析した。その結果、Otx2蛋白質が視覚野のPV陽性細胞へ局在することが、臨界期の眼優位可塑性に必要であることが明らかになった。これらの結果は、Otx2に対する阻害抗体やsiRNAを視覚野に投与した後に解析した結果と一致する。一連の研究により、細胞非自律的なOtx2蛋白質が視覚野のPV陽性細胞の発達と眼優位可塑性の誘導に必要であることが明らかになった。

    researchmap

  • マウス眼優位性可塑的変化に関わる皮質抑制性介在ニューロンの分子機構の解析

    Grant number:15700265

    2003 - 2004

    System name:科学研究費助成事業

    Research category:若手研究(B)

    Awarding organization:日本学術振興会

    杉山 清佳

      More details

    Grant amount:\3500000 ( Direct Cost: \3500000 )

    哺乳類の視覚野には両眼から入力を受ける領域があり、神経活動依存的に入力の優劣(眼優位性)を形成する時期(臨界期)がある。臨界期に片眼を塞ぎ入力を妨げると、開いた眼の入力が優位になるよう神経回路網の機能と形態は可塑的に変化する。近年GABA合成酵素の一つであるGAD65変異マウスには臨界期が現れず、GABA受容体の機能を高める薬剤を皮質投与すると出現することが明らかにされた。すなわち眼優位性の可塑的変化を誘導するには、神経活動の優劣だけでなく皮質抑制性介在ニューロンの発達が必要であると考えられる。特に、介在ニューロンの中でもParvalbumin (PV)を発現する細胞が臨界期に先立って出現することが示されている。
    我々は、Otx2ホメオ蛋白質が視覚野のPV陽性細胞に特異的に局在することを見出してきた。Otx2蛋白質は臨界期の始まりとともに視覚野に広がって検出され、臨界期中にPV陽性細胞へと局在する。面白いことにOtx2 mRNAは視覚野になく、網膜や外側膝状体に発現する。網膜に注入されたビオチン化Otx2蛋白質は視覚経路を通り視覚野のPV陽性細胞へと特異的に取り込まれ、また両眼を除いたマウスや暗所飼育されたマウスではOtx2蛋白質が減退する。これらの結果から、Otx2蛋白質が視覚経験依存的に視覚経路を通り視覚野へと運ばれる可能性が示唆された。さらに臨界期前の視覚野に強制導入されたOtx2蛋白質は、PV陽性細胞に取り込まれた後PV陽性細胞の機能分子(K_v3.1,α1GABA_AR, GAD65)の発現を増強する。このとき臨界期は早期に出現し収束することがin vivo単一神経細胞記録法により明らかになった。すなわち、Otx2蛋白質は視覚経験依存的に視覚野へと運ばれ、PV陽性細胞の発達を促進し、臨界期を制御すると考えられた。現在、これらの成果を論文にまとめ、投稿中である。

    researchmap

▶ display all

 

Teaching Experience (researchmap)

  • 人体の構造と機能I(解剖総論・肉眼解剖学)

     More details

  • 人体の構造と機能I(生理学)

     More details

  • 先端医科学研究概説

     More details

  • 人体の構造と機能II(神経解剖学・実習)

     More details

  • 医学研究実習

     More details

  • 細胞生物学

     More details

  • 脳と心の医科学

    Institution name:新潟大学大学院

     More details

  • 人体の構造と機能II(生理学・実習)(新潟大学)

     More details

▶ display all

Teaching Experience

  • 先端医科学研究概説

    2022
    Institution name:新潟大学

  • 生理学実習

    2021
    Institution name:新潟大学

  • 人体の構造と機能II(生理学)

    2021
    Institution name:新潟大学