2021/08/06 更新

写真a

イケウチ モモコ
池内 桃子
IKEUCHI Momoko
所属
教育研究院 自然科学系 地球・生物科学系列 准教授
理学部 理学科 准教授
職名
准教授
外部リンク

学位

  • 博士(理学) ( 2012年3月 )

  • 修士(理学) ( 2009年3月 )

研究分野

  • ライフサイエンス / 発生生物学  / 植物発生学

経歴(researchmap)

  • 新潟大学   理学部 理学科   准教授

    2019年12月 - 現在

      詳細を見る

  • 日本学術振興会   特別研究員RPD

    2017年7月 - 現在

      詳細を見る

  • 理化学研究所   環境資源科学研究センター   基礎科学特別研究員

    2014年4月 - 2017年6月

      詳細を見る

  • 理化学研究所   環境資源科学研究センター   特別研究員

    2012年4月 - 2014年3月

      詳細を見る

  • 基礎生物学研究所特別共同利用研究員

    2009年4月 - 2012年3月

      詳細を見る

  • 日本学術振興会DC1

    2009年4月 - 2012年3月

      詳細を見る

▶ 全件表示

経歴

  • 新潟大学   理学部 理学科   准教授

    2019年12月 - 現在

学歴

  • 東京大学大学院博士課程   理学系研究科   生物科学専攻

    2009年4月 - 2012年3月

      詳細を見る

  • 東京大学大学院修士課程   理学系研究科   生物科学専攻

    2007年4月 - 2009年3月

      詳細を見る

  • 東京大学理学部

    2003年4月 - 2007年3月

      詳細を見る

所属学協会

 

論文

  • Plant stem cell research is uncovering the secrets of longevity and persistent growth

    Masaaki Umeda, Momoko Ikeuchi, Masaki Ishikawa, Toshiro Ito, Ryuichi Nishihama, Junko Kyozuka, Keiko U. Torii, Akiko Satake, Gohta Goshima, Hitoshi Sakakibara

    The Plant Journal   2021年4月

     詳細を見る

    掲載種別:研究論文(学術雑誌)   出版者・発行元:Wiley  

    DOI: 10.1111/tpj.15184

    researchmap

  • How do plants transduce wound signals to induce tissue repair and organ regeneration?

    Momoko Ikeuchi, Bart Rymen, Keiko Sugimoto

    Current Opinion in Plant Biology   57   72 - 77   2020年10月

     詳細を見る

    掲載種別:研究論文(学術雑誌)   出版者・発行元:Elsevier {BV}  

    DOI: 10.1016/j.pbi.2020.06.007

    researchmap

  • The SUMO E3 Ligase SIZ1 Negatively Regulates Shoot Regeneration

    Duncan Coleman, Ayako Kawamura, Momoko Ikeuchi, David S. Favero, Alice Lambolez, Bart Rymen, Akira Iwase, Takamasa Suzuki, Keiko Sugimoto

    Plant Physiology   184 ( 1 )   330 - 344   2020年9月

     詳細を見る

    掲載種別:研究論文(学術雑誌)   出版者・発行元:American Society of Plant Biologists ({ASPB})  

    DOI: 10.1104/pp.20.00626

    researchmap

  • Molecular Basis for Natural Vegetative Propagation via Regeneration in North American Lake Cress, Rorippa aquatica (Brassicaceae). 査読

    Rumi Amano, Hokuto Nakayama, Risa Momoi, Emi Omata, Shizuka Gunji, Yumiko Takebayashi, Mikiko Kojima, Shuka Ikematsu, Momoko Ikeuchi, Akira Iwase, Tomoaki Sakamoto, Hiroyuki Kasahara, Hitoshi Sakakibara, Ali Ferjani, Seisuke Kimura

    Plant & cell physiology   61 ( 2 )   353 - 369   2020年2月

     詳細を見る

    記述言語:英語  

    Some plant species have a striking capacity for regeneration in nature, including regeneration of the entire individual from explants. However, due to the lack of suitable experimental models, the regulatory mechanisms of spontaneous whole plant regeneration are mostly unknown. In this study, we established a novel model system to study these mechanisms using an amphibious plant within Brassicaceae, Rorippa aquatica, which naturally undergoes vegetative propagation via regeneration from leaf fragments. Morphological and anatomical observation showed that both de novo root and shoot organogenesis occurred from the proximal side of the cut edge transversely with leaf vascular tissue. Time-series RNA-seq analysis revealed that auxin and cytokinin responses were activated after leaf amputation and that regeneration-related genes were upregulated mainly on the proximal side of the leaf explants. Accordingly, we found that both auxin and cytokinin accumulated on the proximal side. Application of a polar auxin transport inhibitor retarded root and shoot regeneration, suggesting that the enhancement of auxin responses caused by polar auxin transport enhanced de novo organogenesis at the proximal wound site. Exogenous phytohormone and inhibitor applications further demonstrated that, in R. aquatica, both auxin and gibberellin are required for root regeneration, whereas cytokinin is important for shoot regeneration. Our results provide a molecular basis for vegetative propagation via de novo organogenesis.

    DOI: 10.1093/pcp/pcz202

    PubMed

    researchmap

  • Molecular Mechanisms of Plant Regeneration. 査読 国際誌

    Momoko Ikeuchi, David S Favero, Yuki Sakamoto, Akira Iwase, Duncan Coleman, Bart Rymen, Keiko Sugimoto

    Annual review of plant biology   70   377 - 406   2019年4月

     詳細を見る

    記述言語:英語  

    Plants reprogram somatic cells following injury and regenerate new tissues and organs. Upon perception of inductive cues, somatic cells often dedifferentiate, proliferate, and acquire new fates to repair damaged tissues or develop new organs from wound sites. Wound stress activates transcriptional cascades to promote cell fate reprogramming and initiate new developmental programs. Wounding also modulates endogenous hormonal responses by triggering their biosynthesis and/or directional transport. Auxin and cytokinin play pivotal roles in determining cell fates in regenerating tissues and organs. Exogenous application of these plant hormones enhances regenerative responses in vitro by facilitating the activation of specific developmental programs. Many reprogramming regulators are epigenetically silenced during normal development but are activated by wound stress and/or hormonal cues.

    DOI: 10.1146/annurev-arplant-050718-100434

    PubMed

    researchmap

  • Histone acetylation orchestrates wound-induced transcriptional activation and cellular reprogramming in Arabidopsis 査読

    Bart Rymen, Ayako Kawamura, Alice Lambolez, Soichi Inagaki, Arika Takebayashi, Akira Iwase, Yuki Sakamoto, Kaori Sako, David S. Favero, Momoko Ikeuchi, Takamasa Suzuki, Motoaki Seki, Tetsuji Kakutani, François Roudier, Keiko Sugimoto

    Communications Biology   404   2019年

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    researchmap

  • A Gene Regulatory Network for Cellular Reprogramming in Plant Regeneration. 査読

    Momoko Ikeuchi, Michitaro Shibata, Bart Rymen, Akira Iwase, Anne-Maarit Bågman, Lewis Watt, Duncan Coleman, David S Favero, Tatsuya Takahashi, Sebastian E Ahnert, Siobhan M Brady, Keiko Sugimoto

    Plant & cell physiology   59 ( 4 )   765 - 777   2018年4月

     詳細を見る

    記述言語:英語  

    Wounding triggers organ regeneration in many plant species, and application of plant hormones, such as auxin and cytokinin, enhances their regenerative capacities in tissue culture. Recent studies have identified several key players mediating wound- and/or plant hormone-induced cellular reprogramming, but the global architecture of gene regulatory relationships underlying plant cellular reprogramming is still far from clear. In this study, we uncovered a gene regulatory network (GRN) associated with plant cellular reprogramming by using an enhanced yeast one-hybrid (eY1H) screen systematically to identify regulatory relationships between 252 transcription factors (TFs) and 48 promoters. Our network analyses suggest that wound- and/or hormone-invoked signals exhibit extensive cross-talk and regulate many common reprogramming-associated genes via multilayered regulatory cascades. Our data suggest that PLETHORA 3 (PLT3), ENHANCER OF SHOOT REGENERATION 1 (ESR1) and HEAT SHOCK FACTOR B 1 (HSFB1) act as critical nodes that have many overlapping targets and potentially connect upstream stimuli to downstream developmental decisions. Interestingly, a set of wound-inducible APETALA 2/ETHYLENE RESPONSE FACTORs (AP2/ERFs) appear to regulate these key genes, which, in turn, form feed-forward cascades that control downstream targets associated with callus formation and organ regeneration. In addition, we found another regulatory pathway, mediated by LATERAL ORGAN BOUNDARY/ASYMMETRIC LEAVES 2 (LOB/AS2) TFs, which probably plays a distinct but partially overlapping role alongside the AP2/ERFs in the putative gene regulatory cascades. Taken together, our findings provide the first global picture of the GRN governing plant cell reprogramming, which will serve as a valuable resource for future studies.

    DOI: 10.1093/pcp/pcy013

    PubMed

    researchmap

  • Wounding Triggers Callus Formation via Dynamic Hormonal and Transcriptional Changes 査読

    Momoko Ikeuchi, Akira Iwase, Bart Rymen, Alice Lambolez, Mikiko Kojima, Yumiko Takebayashi, Jefri Heyman, Shunsuke Watanabe, Mitsunori Seo, Lieven de Veylder, Hitoshi Sakakibara, Keiko Sugimoto

    PLANT PHYSIOLOGY   175 ( 3 )   1158 - 1174   2017年11月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:AMER SOC PLANT BIOLOGISTS  

    Wounding is a primary trigger of organ regeneration, but how wound stress reactivates cell proliferation and promotes cellular reprogramming remains elusive. In this study, we combined transcriptome analysis with quantitative hormonal analysis to investigate how wounding induces callus formation in Arabidopsis (Arabidopsis thaliana). Our time course RNA-seq analysis revealed that wounding induces dynamic transcriptional changes, starting from rapid stress responses followed by the activation of metabolic processes and protein synthesis and subsequent activation of cell cycle regulators. Gene ontology analyses further uncovered that wounding modifies the expression of hormone biosynthesis and response genes, and quantitative analysis of endogenous plant hormones revealed accumulation of cytokinin prior to callus formation. Mutants defective in cytokinin synthesis and signaling display reduced efficiency in callus formation, indicating that de novo synthesis of cytokinin is critical for wound-induced callus formation. We further demonstrate that type-B ARABIDOPSIS RESPONSE REGULATOR-mediated cytokinin signaling regulates the expression of CYCLIN D3;1 (CYCD3;1) and that mutations in CYCD3;1 and its homologs CYCD3;2 and 3 cause defects in callus formation. In addition to these hormone-mediated changes, our transcriptome data uncovered that wounding activates multiple developmental regulators, and we found novel roles of ETHYLENE RESPONSE FACTOR 115 and PLETHORA3 (PLT3), PLT5, and PLT7 in callus generation. All together, these results provide novel mechanistic insights into how wounding reactivates cell proliferation during callus formation.

    DOI: 10.1104/pp.17.01035

    Web of Science

    PubMed

    researchmap

  • Latest Advances in Plant Development and Environmental Response: The Inaugural Cold Spring Harbor Asia Plant Biology Meeting in Japan 査読

    Momoko Ikeuchi, Jack Rhodes

    PLANT AND CELL PHYSIOLOGY   58 ( 8 )   1286 - 1290   2017年8月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:OXFORD UNIV PRESS  

    With stunning ocean views over Osaka Bay, Awaji Island played host to the first Cold Spring Harbor Asia Plant Biology meeting in Japan. The meeting, 'Latest Advances in Plant Development and Environmental Response' (CSHAPB), provided a platform to promote scientific communication and collaboration in the pan-pacific region. The event welcomed almost 200 scientists from around the world to showcase their cutting-edge research. Exemplary speakers from diverse research fields presented their latest discoveries, ranging from developmental mechanisms to host-pathogen interactions, environmental responses and stress memory. Here we seek to review the meeting and highlight some of the salient themes that emerged over the course of the 3 d.

    DOI: 10.1093/pcp/pcx083

    Web of Science

    PubMed

    researchmap

  • WIND1 Promotes Shoot Regeneration through Transcriptional Activation of ENHANCER OF SHOOT REGENERATION1 in Arabidopsis 査読

    Akira Iwase, Hirofumi Harashima, Momoko Ikeuchi, Bart Rymen, Mariko Ohnuma, Shinichiro Komaki, Kengo Morohashi, Tetsuya Kurata, Masaru Nakata, Masaru Ohme-Takagi, Erich Grotewold, Keiko Sugimoto

    PLANT CELL   29 ( 1 )   54 - 69   2017年1月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:AMER SOC PLANT BIOLOGISTS  

    Many plant species display remarkable developmental plasticity and regenerate new organs after injury. Local signals produced by wounding are thought to trigger organ regeneration but molecular mechanisms underlying this control remain largely unknown. We previously identified an AP2/ERF transcription factor WOUND INDUCED DEDIFFERENTIATION1 (WIND1) as a central regulator of wound-induced cellular reprogramming in plants. In this study, we demonstrate that WIND1 promotes callus formation and shoot regeneration by upregulating the expression of the ENHANCER OF SHOOT REGENERATION1 (ESR1) gene, which encodes another AP2/ERF transcription factor in Arabidopsis thaliana. The esr1 mutants are defective in callus formation and shoot regeneration; conversely, its overexpression promotes both of these processes, indicating that ESR1 functions as a critical driver of cellular reprogramming. Our data show that WIND1 directly binds the vascular system-specific and wound-responsive cis-element-like motifs within the ESR1 promoter and activates its expression. The expression of ESR1 is strongly reduced in WIND1-SRDX dominant repressors, and ectopic overexpression of ESR1 bypasses defects in callus formation and shoot regeneration in WIND1-SRDX plants, supporting the notion that ESR1 acts downstream of WIND1. Together, our findings uncover a key molecular pathway that links wound signaling to shoot regeneration in plants.

    DOI: 10.1105/tpc.16.00623

    Web of Science

    PubMed

    researchmap

  • Plant regeneration: cellular origins and molecular mechanisms 査読

    Momoko Ikeuchi, Yoichi Ogawa, Akira Iwase, Keiko Sugimoto

    DEVELOPMENT   143 ( 9 )   1442 - 1451   2016年5月

     詳細を見る

    記述言語:英語   出版者・発行元:COMPANY OF BIOLOGISTS LTD  

    Compared with animals, plants generally possess a high degree of developmental plasticity and display various types of tissue or organ regeneration. This regenerative capacity can be enhanced by exogenously supplied plant hormones in vitro, wherein the balance between auxin and cytokinin determines the developmental fate of regenerating organs. Accumulating evidence suggests that some forms of plant regeneration involve reprogramming of differentiated somatic cells, whereas others are induced through the activation of relatively undifferentiated cells in somatic tissues. We summarize the current understanding of how plants control various types of regeneration and discuss how developmental and environmental constraints influence these regulatory mechanisms.

    DOI: 10.1242/dev.134668

    Web of Science

    PubMed

    researchmap

  • Control of plant cell differentiation by histone modification and DNA methylation 査読

    Momoko Ikeuchi, Akira Iwase, Keiko Sugimoto

    CURRENT OPINION IN PLANT BIOLOGY   28   60 - 67   2015年12月

     詳細を見る

    記述言語:英語   出版者・発行元:CURRENT BIOLOGY LTD  

    How cells differentiate and acquire diverse arrays of determined states in multicellular organisms is a fundamental and yet unanswered question in biology. Molecular genetic studies over the last few decades have identified many transcriptional regulators that activate or repress gene expression to promote cell differentiation in plant development. What has recently emerged as an additional important regulatory layer is the control at the epigenetic level by which locus-specific DNA methylation and histone modification alter the chromatin state and limit the expression of key developmental regulators to specific windows of time and space. Accumulating evidence suggests that histone acetylation is commonly linked with active transcription and this mechanism is adopted to control sequential progression of cell differentiation. Histone H3 trimethylation at lysine 27 and DNA methylation are both associated with gene repression, and these mechanisms are often utilised to promote and/or maintain the differentiated status of plant cells.

    DOI: 10.1016/j.pbi.2015.09.004

    Web of Science

    PubMed

    researchmap

  • PRC2 represses dedifferentiation of mature somatic cells in Arabidopsis 査読

    Momoko Ikeuchi, Akira Iwase, Bart Rymen, Hirofumi Harashima, Michitaro Shibata, Mariko Ohnuma, Christian Breuer, Ana Karina Morao, Miguel de Lucas, Lieven De Veylder, Justin Goodrich, Siobhan M. Brady, Francois Roudier, Keiko Sugimoto

    NATURE PLANTS   1 ( 7 )   1 - 7   2015年6月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:NATURE PUBLISHING GROUP  

    Plant somatic cells are generally acknowledged to retain totipotency, the potential to develop into any cell type within an organism. This astonishing plasticity may contribute to a high regenerative capacity on severe damage, but how plants control this potential during normal post-embryonic development remains largely unknown(1,2). Here we show that POLYCOMB REPRESSIVE COMPLEX 2 (PRC2), a chromatin regulator that maintains gene repression through histone modification, prevents dedifferentiation of mature somatic cells in Arabidopsis thaliana roots. Loss-of-function mutants in PRC2 subunits initially develop unicellular root hairs indistinguishable from those in wild type but fail to retain the differentiated state, ultimately resulting in the generation of an unorganized cell mass and somatic embryos from a single root hair. Strikingly, mutant root hairs complete the normal endoreduplication programme, increasing their nuclear ploidy, but subsequently reinitiate mitotic division coupled with successive DNA replication. Our data show that the WOUND INDUCED DEDIFFERENTIATION3 (WIND3) and LEAFY COTYLEDON2 (LEC2) genes are among the PRC2 targets involved in this reprogramming, as their ectopic overexpression partly phenocopies the dedifferentiation phenotype of PRC2 mutants. These findings unveil the pivotal role of PRC2-mediated gene repression in preventing unscheduled reprogramming of fully differentiated plant cells.

    DOI: 10.1038/NPLANTS.2015.89

    Web of Science

    PubMed

    researchmap

  • WIND1-based acquisition of regeneration competency in Arabidopsis and rapeseed 査読

    Akira Iwase, Kento Mita, Satoko Nonaka, Momoko Ikeuchi, Chie Koizuka, Mariko Ohnuma, Hiroshi Ezura, Jun Imamura, Keiko Sugimoto

    JOURNAL OF PLANT RESEARCH   128 ( 3 )   389 - 397   2015年5月

     詳細を見る

    記述言語:英語   出版者・発行元:SPRINGER JAPAN KK  

    Callus formation and de novo organogenesis often occur in the wounded tissues of plants. Although this regenerative capacity of plant cells has been utilized for many years, molecular basis for the wound-induced acquisition of regeneration competency is yet to be elucidated. Here we find that wounding treatment is essential for shoot regeneration from roots in the conventional tissue culture of Arabidopsis thaliana. Furthermore, we show that an AP2/ERF transcription factor WOUND INDUCED DEDIFFERENTIATION1 (WIND1) plays a pivotal role for the acquisition of regeneration competency in the culture system. Ectopic expression of WIND1 can bypass both wounding and auxin pre-treatment and increase de novo shoot regeneration from root explants cultured on shoot-regeneration promoting media. In Brassica napus, activation of Arabidopsis WIND1 also greatly enhances de novo shoot regeneration, further corroborating the role of WIND1 in conferring cellular regenerative capacity. Our data also show that sequential activation of WIND1 and an embryonic regulator LEAFY COTYLEDON2 enhances generation of embryonic callus, suggesting that combining WIND1 with other transcription factors promote efficient and organ-specific regeneration. Our findings in the model plant and crop plant point to a possible way to efficiently induce callus formation and regeneration by utilizing transcription factors as a molecular switch.

    DOI: 10.1007/s10265-015-0714-y

    Web of Science

    PubMed

    researchmap

  • Acropetal leaflet initiation of Eschscholzia californica is achieved by constant spacing of leaflets and differential growth of leaf 査読

    Momoko Ikeuchi, Hisako Igarashi, Kiyotaka Okada, Hirokazu Tsukaya

    PLANTA   240 ( 1 )   125 - 135   2014年7月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:SPRINGER  

    In compound leaves, leaflet primordia are initiated directionally along the lateral sides. Our understanding of the molecular basis of leaflet initiation has improved, but the regulatory mechanisms underlying spatio-temporal patterns remain unclear. In this study, we investigated the mechanisms of acropetal (from the base to the tip) progression of leaflet initiation in Eschscholzia californica. We established an ultraviolet-laser ablation system to manipulate compound-leaf development. Local ablation at the leaflet incipient site generated leaves with asymmetric morphology. In the majority of cases, leaflets that were initiated on the ablated sides shifted apically. Finite time-course observation revealed that the timing of leaflet initiation was delayed, but the distance from the leaf tip did not decrease. These results were suggestive of the local spacing mechanism in leaflet initiation, whereby the distance from the leaf tip and adjacent pre-existing leaflet determines the position of leaflet initiation. To understand how such a local patterning mechanism generates a global pattern of successive leaflet initiation, we assessed the growth rate gradient along the apical-basal axis. Our time-course analysis revealed differential growth rates along the apical-basal axis of the leaf, which can explain the acropetal progression of leaflet initiation. We propose that a leaflet is initiated at a site where the distances from pre-existing leaflets and the leaf tip are sufficient. Furthermore, the differential growth rate may be a developmental factor underlying the directionality of leaflet initiation.

    DOI: 10.1007/s00425-014-2071-9

    Web of Science

    PubMed

    researchmap

  • Plant Callus: Mechanisms of Induction and Repression 査読

    Momoko Ikeuchi, Keiko Sugimoto, Akira Iwase

    PLANT CELL   25 ( 9 )   3159 - 3173   2013年9月

     詳細を見る

    記述言語:英語   出版者・発行元:AMER SOC PLANT BIOLOGISTS  

    Plants develop unorganized cell masses like callus and tumors in response to various biotic and abiotic stimuli. Since the historical discovery that the combination of two growth-promoting hormones, auxin and cytokinin, induces callus from plant explants in vitro, this experimental system has been used extensively in both basic research and horticultural applications. The molecular basis of callus formation has long been obscure, but we are finally beginning to understand how unscheduled cell proliferation is suppressed during normal plant development and how genetic and environmental cues override these repressions to induce callus formation. In this review, we will first provide a brief overview of callus development in nature and in vitro and then describe our current knowledge of genetic and epigenetic mechanisms underlying callus formation.

    DOI: 10.1105/tpc.113.116053

    Web of Science

    PubMed

    researchmap

  • PRECOCIOUS PROGRESSION OF TISSUE MATURATION INSTRUCTS BASIPETAL INITIATION OF LEAFLETS IN CHELIDONIUM MAJUS SUBSP ASIATICUM (PAPAVERACEAE) 査読

    Momoko Ikeuchi, Kiyoshi Tatematsu, Takahiro Yamaguchi, Kiyotaka Okada, Hirokazu Tsukaya

    AMERICAN JOURNAL OF BOTANY   100 ( 6 )   1116 - 1126   2013年6月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:BOTANICAL SOC AMER INC  

    Premise of the study: On a compound leaf, leaflet primordia are repetitively formed along the apical-basal axis, with the direction varying among taxa. Why and how the directions vary among species is yet to be solved, although a change in a single factor was proposed to cause the variation. In this study, we compared two species in the Papaveraceae with different directions of leaflet initiation, Chelidonium majus subsp. asiaticum (basipetal) and Eschscholzia californica (acropetal). Because E. californica has been studied in some detail, we focused on C. majus and asked how basipetal pattern is achieved.
    Methods: Since only immature leaf primordial tissue has leaflet-generating competency, we performed histological and gene expression analyses on markers of the tissue maturation state. In addition, we performed a time-course analysis of leaf primordial growth.
    Key results: Quantitative reverse transcription-PCR analysis demonstrated that a putative regulator of tissue maturation in C. majus, the CINCINNATA homolog, had higher expression in apical parts than in basal parts during the organogenetic phase. In contrast, expression of the CIN homolog was not elevated in either the apical or basal parts in E. californica during the organogenetic phase.
    Conclusions: In C. majus, apical parts of leaf primordia have already lost leaflet-generating competency during the organogenetic phase. We propose that precocious progression of the maturation process instructs basipetal progression of leaflet initiation in C. majus. This is not the mirror image of data on E. californica, which shows the opposite direction in leaflet formation, indicating that variation in direction is not attributable to a change in a single factor.

    DOI: 10.3732/ajb.1200560

    Web of Science

    PubMed

    researchmap

  • ROTUNDIFOLIA4 査読

    Takahiro Yamaguchi, Momoko Ikeuchi, Hirokazu Tsukaya

    Handbook of Biologically Active Peptides   53 - 57   2013年

     詳細を見る

    記述言語:英語   掲載種別:論文集(書籍)内論文   出版者・発行元:Elsevier Inc.  

    DOI: 10.1016/B978-0-12-385095-9.00011-7

    Scopus

    researchmap

  • Arabidopsis WIND1 induces callus formation in rapeseed, tomato, and tobacco. 査読 国際誌

    Akira Iwase, Nobutaka Mitsuda, Momoko Ikeuchi, Mariko Ohnuma, Chie Koizuka, Koich Kawamoto, Jun Imamura, Hiroshi Ezura, Keiko Sugimoto

    Plant signaling & behavior   8 ( 12 )   e27432   2013年

     詳細を見る

    記述言語:英語   出版者・発行元:12  

    The capacity to promote cell dedifferentiation is widespread among plant species. We have recently reported that an AP2/ERF transcription factor WOUND INDUCED DEDIFFERENTIATION 1 (WIND1) and its paralogues, WIND2-4, promote cell dedifferentiation in Arabidopsis (Arabidopsis thaliana). Phylogenetic analyses suggest that AtWIND1 orthologs are found in land plants and that the shared peptide motifs between Arabidopsis paralogues are conserved in putative orthologs in dicotyledonous and monocotyledonous plants. In this study we show that AtWIND1 chemically induced rapeseed and tomato, as well as AtWIND1 constitutively expressed tobacco, promote callus formation on phytohormone-free medium. Our results suggest that the WIND1-mediated signaling cascade to promote cell dedifferentiation might be conserved in at least several species of Brassicaceae and Solanaceae.

    DOI: 10.4161/psb.27432

    PubMed

    researchmap

  • ROTUNDIFOLIA4 Regulates Cell Proliferation Along the Body Axis in Arabidopsis Shoot 査読

    Momoko Ikeuchi, Takahiro Yamaguchi, Toshiya Kazama, Tasuku Ito, Gorou Horiguchi, Hirokazu Tsukaya

    PLANT AND CELL PHYSIOLOGY   52 ( 1 )   59 - 69   2011年1月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:OXFORD UNIV PRESS  

    Molecular genetics has been successful in identifying leaf-size regulators such as transcription factors, phytohormones, and signal molecules. Among them, a ROTUNDIFOLIA4-LIKE/DEVIL (RTFL/DVL) family of Arabidopsis, genes encoding peptides with no secretion-signal sequence, is unique in that their overexpressors have a reduced number of leaf cells specifically along the proximodistal axis. However, because the RTFL/DVL lack any obvious homology with functionally identified domains, and because of genetic redundancy among RTFL/DVL, their molecular and developmental roles are unclear. In this study we focused on one member in the family, ROTUNDIFOLIA4 (ROT4), and identified the core functional region within it and we found no proteolytic processing in planta. Developmental analysis of leaf primordia revealed that ROT4 overexpression reduces the meristematic zone size within the leaf blade. Moreover, induced local overexpression demonstrated that ROT4 acts as a regulator of the leaf shape via a change in positional cue along the longitudinal axis. Similarly, ROT4 overexpression results in a protrusion of the main inflorescence stem, again indicating a change in positional cue along the longitudinal axis. These results suggest that ROT4 affects the positional cue and cell proliferation along the body axis.

    DOI: 10.1093/pcp/pcq138

    Web of Science

    PubMed

    researchmap

  • AtMap1: a DNA microarray for genomic deletion mapping in Arabidopsis thaliana 査読

    Atsushi J. Nagano, Mitsue Fukazawa, Makoto Hayashi, Momoko Ikeuchi, Hirokazu Tsukaya, Mikio Nishimura, Ikuko Hara-Nishimura

    PLANT JOURNAL   56 ( 6 )   1058 - 1065   2008年12月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:WILEY-BLACKWELL PUBLISHING, INC  

    We have designed a novel tiling array, AtMap1, for genomic deletion mapping. AtMap1 is a 60-mer oligonucleotide microarray consisting of 42 497 data probes designed from the genomic sequence of Arabidopsis thaliana Col-0. The average probe interval is 2.8 kb. The performance of the AtMap1 array was assessed using the deletion mutants mag2-2, rot3-1 and zig-2. Eight of the probes showed threefold lower signals in mag2-2 than Col-0. Seven of these probes were located in one region on chromosome 3. We considered these adjacent probes to represent one deletion. This deletion was consistent with a reported deleted region. The other probe was located near the end of chromosome 4. A newly identified deletion around the probe was confirmed by PCR. We also detected the responsible deletions for rot3-1 and zig-2. Thus we concluded that the AtMap1 array was sufficiently sensitive to identify a deletion without any a priori knowledge of the deletion. An analysis of the result of hybridization of Ler and previously reported polymorphism data revealed that the signal decrease tended to depend on the overlap size of sequence polymorphisms. Mutation mapping is time-consuming, laborious and costly. The AtMap1 array removes these limitations.

    DOI: 10.1111/j.1365-313X.2008.03656.x

    Web of Science

    PubMed

    researchmap

  • Morphological variation in leaf shape in Ainsliaea apiculata with special reference to the endemic characters of populations on Yakushima Island, Japan 査読

    H. Tsukaya, R. Tsujino, M. Ikeuchi, Y. Isshiki, M. Kono, T. Takeuchi, T. Araki

    JOURNAL OF PLANT RESEARCH   120 ( 3 )   351 - 358   2007年5月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:SPRINGER TOKYO  

    We analyzed leaf shape variations in Ainsliaea apiculata Sch. Bip. to evaluate the uniqueness of morphological characters in populations on Yakushima Island, Kagoshima Prefecture, Japan. Leaf size and shape from populations on Yakushima Island (n = 300) were compared with those from populations in other areas of Japan (n = 300). A considerable amount of variation occurred in leaf size in A. apiculata populations both on Yakushima Island and elsewhere, but clear discontinuities in leaf size were not detected. Some variants previously thought to be endemic to Yakushima Island, i.e., A. apiculata var. acerifolia and A. apiculata var. rotundifolia, were also found in other locations in Japan. Moreover, these leaf types were found to be continuous with the typical leaf shape of A. apiculata var. apiculata via various intermediate types, suggesting the need for future revision of these taxa. Based on these results, we reevaluated the uniqueness of the Yakushima populations of A. apiculata in terms of leaf variation. The uniqueness of the Yakushima populations was defined by a more diverse leaf shape than found in populations from other areas.

    DOI: 10.1007/s10265-007-0079-y

    Web of Science

    PubMed

    researchmap

▶ 全件表示

MISC

受賞

  • 奨励賞

    2016年4月   理化学研究所環境資源科学研究センター  

    池内 桃子

     詳細を見る

  • 若手奨励賞

    2015年5月   日本植物学会  

    池内 桃子

     詳細を見る

  • 内藤コンファレンスポスター賞

    2014年10月   内藤財団  

    池内 桃子

     詳細を見る

  • 東京大学総長賞

    2007年3月   東京大学  

    池内 桃子

     詳細を見る

共同研究・競争的資金等の研究

  • 傷口の組織治癒を制御するWOX転写因子とペプチドホルモンの機能解析

    研究課題/領域番号:20K06712  2020年4月 - 2023年3月

    日本学術振興会  科学研究費助成事業 基盤研究(C)  基盤研究(C)

    池内 桃子

      詳細を見る

    配分額:4290000円 ( 直接経費:3300000円 、 間接経費:990000円 )

    researchmap

  • 幹細胞新生を抑制するホメオボックス型転写因子の機能解明

    研究課題/領域番号:20H04894  2020年4月 - 2022年3月

    日本学術振興会  科学研究費助成事業 新学術領域研究(研究領域提案型)  新学術領域研究(研究領域提案型)

    池内 桃子

      詳細を見る

    配分額:11700000円 ( 直接経費:9000000円 、 間接経費:2700000円 )

    researchmap

  • 器官再生系の1細胞RNA-seq 解析から読み解く遺伝子発現ダイナミクス

    研究課題/領域番号:20H05431  2020年4月 - 2022年3月

    日本学術振興会  科学研究費助成事業 新学術領域研究(研究領域提案型)  新学術領域研究(研究領域提案型)

    池内 桃子

      詳細を見る

    配分額:9100000円 ( 直接経費:7000000円 、 間接経費:2100000円 )

    researchmap

  • 植物細胞の分化可塑性を支える発生基盤の解明

    2017年7月 - 2021年3月

    日本学術振興会  特別研究員奨励費 

    池内 桃子

      詳細を見る

    担当区分:研究代表者  資金種別:競争的資金

    researchmap

  • 植物細胞リプログラミングにおけるWOX 遺伝子の機能解析

    2017年4月 - 2019年3月

    日本学術振興会  若手研究(B) 

    池内 桃子

      詳細を見る

    担当区分:研究代表者  資金種別:競争的資金

    researchmap

  • 最終分化細胞が分裂しないのはなぜか?

    2015年4月 - 2017年3月

    日本学術振興会  若手研究(B) 

    池内 桃子

      詳細を見る

    担当区分:研究代表者  資金種別:競争的資金

    researchmap

  • 葉における側方原基形成の方向性決定機構の解析

    2009年4月 - 2012年3月

    日本学術振興会  特別研究員奨励費 

    池内 桃子

      詳細を見る

    担当区分:研究代表者  資金種別:競争的資金

    researchmap

▶ 全件表示

 

担当経験のある授業科目

  • 進化発生生物学特論II

    2021年
    -
    現在
    機関名:新潟大学

  • 生物学実験

    2021年
    -
    現在
    機関名:新潟大学

  • 生物学基礎演習

    2021年
    -
    現在
    機関名:新潟大学

  • 理学スタディ・スキルズ

    2021年
    -
    現在
    機関名:新潟大学

  • 生物学総合演習

    2020年
    -
    現在
    機関名:新潟大学

  • 基礎生物科学実習II

    2020年
    -
    現在
    機関名:新潟大学

  • 進化発生生物学特論Ⅰ

    2020年
    -
    現在
    機関名:新潟大学

  • 生物学基礎実習a

    2020年
    -
    現在
    機関名:新潟大学

  • 課題研究II(生物学)

    2020年
    -
    現在
    機関名:新潟大学

  • 課題研究(自然環境)B

    2020年
    -
    現在
    機関名:新潟大学

  • 課題研究I(生物学)

    2020年
    -
    現在
    機関名:新潟大学

  • 生体情報学

    2020年
    -
    現在
    機関名:新潟大学

  • 生物学基礎実習b

    2020年
    -
    現在
    機関名:新潟大学

  • 自然環境科学総論

    2020年
    -
    現在
    機関名:新潟大学

  • 生物学基礎B

    2020年
    -
    現在
    機関名:新潟大学

  • 進化生物学

    2020年
    -
    現在
    機関名:新潟大学

  • 基礎生物科学実習I

    2020年
    -
    現在
    機関名:新潟大学

  • 自然科学基礎実験

    2020年
    -
    現在
    機関名:新潟大学

  • 生命科学への招待(生物学学習法)

    2020年
    -
    現在
    機関名:新潟大学

  • 環境生物学演習

    2020年
    -
    現在
    機関名:新潟大学

  • 自然環境科学実験B2

    2020年
    -
    現在
    機関名:新潟大学

  • 自然環境科学実験B1

    2020年
    -
    現在
    機関名:新潟大学

  • 植物生理学演習

    2020年
    -
    現在
    機関名:新潟大学

▶ 全件表示