2024/04/19 更新

写真a

ニッタ ヨウヘイ
新田 陽平
NITTA Yohei
所属
脳研究所 生命科学リソース研究センター 特任助教
職名
特任助教
外部リンク

学位

  • 博士(理学) ( 2017年1月   東京大学 )

研究キーワード

  • ショウジョウバエ

  • 神経変性

  • 脂質代謝

  • キノコ体

  • 神経発生

研究分野

  • ライフサイエンス / 神経科学一般

経歴(researchmap)

  • 新潟大学   脳研究所   特任助教

    2021年4月 - 現在

      詳細を見る

  • 新潟大学   研究推進機構 超域学術院   日本学術振興会特別研究員PD

    2018年4月 - 2021年3月

      詳細を見る

  • 新潟大学   研究推進機構 超域学術院   研究員

    2017年1月 - 2018年3月

      詳細を見る

経歴

  • 新潟大学   脳研究所 生命科学リソース研究センター   特任助教

    2021年4月 - 現在

 

論文

  • Stretch-activated ion channel TMEM63B associates with developmental and epileptic encephalopathies and progressive neurodegeneration 査読

    Annalisa Vetro, Cristiana Pelorosso, Simona Balestrini, Alessio Masi, Sophie Hambleton, Emanuela Argilli, Valerio Conti, Simone Giubbolini, Rebekah Barrick, Gaber Bergant, Karin Writzl, Emilia K. Bijlsma, Theresa Brunet, Pilar Cacheiro, Davide Mei, Anita Devlin, Mariëtte J.V. Hoffer, Keren Machol, Guido Mannaioni, Masamune Sakamoto, Manoj P. Menezes, Thomas Courtin, Elliott Sherr, Riccardo Parra, Ruth Richardson, Tony Roscioli, Marcello Scala, Celina von Stülpnagel, Damian Smedley, Annalaura Torella, Jun Tohyama, Reiko Koichihara, Keisuke Hamada, Kazuhiro Ogata, Takashi Suzuki, Atsushi Sugie, Jasper J. van der Smagt, Koen van Gassen, Stephanie Valence, Emma Vittery, Stephen Malone, Mitsuhiro Kato, Naomichi Matsumoto, Gian Michele Ratto, Renzo Guerrini, Francesca Pochiero, Francesco Mari, Venkateswaran Ramesh, Valeria Capra, Margherita Mancardi, Boris Keren, Cyiril Mignot, Matteo Lulli, Kendall Parks, Helen Griffin, Melanie Brugger, Vincenzo Nigro, Yuko Hirata, Reiko Koichihara, Borut Peterlin, Yuko Hirata, Ryuto Maki, Yohei Nitta, John C. Ambrose, Prabhu Arumugam, Roel Bevers, Marta Bleda, Freya Boardman-Pretty, Christopher R. Boustred, Helen Brittain, Matthew A. Brown, Mark J. Caulfield, Georgia C. Chan, Adam Giess, John N. Griffin, Angela Hamblin, Shirley Henderson, Tim J.P. Hubbard, Rob Jackson, Louise J. Jones, Dalia Kasperaviciute, Melis Kayikci, Athanasios Kousathanas, Lea Lahnstein, Anna Lakey, Sarah E.A. Leigh, Ivonne U.S. Leong, Javier F. Lopez, Fiona Maleady-Crowe, Meriel McEntagart, Federico Minneci, Jonathan Mitchell, Loukas Moutsianas, Michael Mueller, Nirupa Murugaesu, Anna C. Need, Peter O’Donovan, Chris A. Odhams, Christine Patch, Daniel Perez-Gil, Marina B. Pereira, John Pullinger, Tahrima Rahim, Augusto Rendon, Tim Rogers, Kevin Savage, Kushmita Sawant, Richard H. Scott, Afshan Siddiq, Alexander Sieghart, Samuel C. Smith, Alona Sosinsky, Alexander Stuckey, Mélanie Tanguy, Ana Lisa Taylor Tavares, Ellen R.A. Thomas, Simon R. Thompson, Arianna Tucci, Matthew J. Welland, Eleanor Williams, Katarzyna Witkowska, Suzanne M. Wood, Magdalena Zarowiecki

    The American Journal of Human Genetics   110 ( 8 )   1356 - 1376   2023年7月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:Elsevier BV  

    DOI: 10.1016/j.ajhg.2023.06.008

    researchmap

  • Drosophila model to clarify the pathological significance of OPA1 in autosomal dominant optic atrophy 査読

    Yohei Nitta, Jiro Osaka, Ryuto Maki, Satoko Hakeda-Suzuki, Emiko Suzuki, Satoshi Ueki, Takashi Suzuki, Atsushi Sugie

    2023年6月

     詳細を見る

    担当区分:筆頭著者   記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:eLife Sciences Publications, Ltd  

    Autosomal dominant optic atrophy (DOA) is a progressive form of blindness caused by degeneration of retinal ganglion cells and their axons, mainly caused by mutations in the OPA1 mitochondrial dynamin like GTPase (OPA1) gene. OPA1 encodes a dynamin-like GTPase present in the mitochondrial inner membrane. When associated with OPA1 mutations, DOA can present not only ocular symptoms but also multi-organ symptoms (DOA plus). DOA plus often results from point mutations in the GTPase domain, which are assumed to have dominant negative effects. However, the presence of mutations in the GTPase domain does not always result in DOA plus. Therefore, an experimental system to distinguish between DOA and DOA plus is needed. In this study, we found that loss-of-function mutations of the dOPA1 gene in Drosophila can imitate the pathology of optic nerve degeneration observed in DOA. We successfully rescued this degeneration by expressing the human OPA1 (hOPA1) gene, indicating that hOPA1 is functionally interchangeable with dOPA1 in the fly system. However, we could not rescue any previously reported mutations known to cause either DOA or DOA plus. By expressing both WT and DOA plus mutant hOPA1 forms in the optic nerve of dOPA1 mutants, we observed that DOA plus mutations suppressed the rescue, facilitating the distinction between loss-of-function and dominant negative mutations in hOPA1. The fly model developed in this study can assist in the differential diagnosis between DOA and DOA plus and inform early treatment decisions in patients with mutations in hOPA1.

    DOI: 10.7554/elife.87880.1

    researchmap

  • Heterozygous loss-of-function DHX9 variants are associated with neurodevelopmental disorders: Human genetic and experimental evidences 査読

    Mamiko Yamada, Yohei Nitta, Tomoko Uehara, Hisato Suzuki, Fuyuki Miya, Toshiki Takenouchi, Masaru Tamura, Shinya Ayabe, Atsushi Yoshiki, Akiteru Maeno, Yumiko Saga, Tamio Furuse, Ikuko Yamada, Nobuhiko Okamoto, Kenjiro Kosaki, Atsushi Sugie

    European Journal of Medical Genetics   104804 - 104804   2023年6月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:Elsevier BV  

    DOI: 10.1016/j.ejmg.2023.104804

    researchmap

  • A novel NONO variant that causes developmental delay and cardiac phenotypes 査読 国際誌

    Toshiyuki Itai, Atsushi Sugie, Yohei Nitta, Ryuto Maki, Takashi Suzuki, Yoichi Shinkai, Yoshihiro Watanabe, Yusuke Nakano, Kazushi Ichikawa, Nobuhiko Okamoto, Yasuhiro Utsuno, Eriko Koshimizu, Atsushi Fujita, Kohei Hamanaka, Yuri Uchiyama, Naomi Tsuchida, Noriko Miyake, Kazuharu Misawa, Takeshi Mizuguchi, Satoko Miyatake, Naomichi Matsumoto

    Scientific Reports   13 ( 1 )   975 - 975   2023年1月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:Springer Science and Business Media LLC  

    Abstract

    The Drosophila behavior/human splicing protein family is involved in numerous steps of gene regulation. In humans, this family consists of three proteins: SFPQ, PSPC1, and NONO. Hemizygous loss-of-function (LoF) variants in NONO cause a developmental delay with several complications (e.g., distinctive facial features, cardiac symptoms, and skeletal symptoms) in an X-linked recessive manner. Most of the reported variants have been LoF variants, and two missense variants have been reported as likely deleterious but with no functional validation. We report three individuals from two families harboring an identical missense variant that is located in the nuclear localization signal, NONO: NM_001145408.2:c.1375C > G p.(Pro459Ala). All of them were male and the variant was inherited from their asymptomatic mothers. Individual 1 was diagnosed with developmental delay and cardiac phenotypes (ventricular tachycardia and dilated cardiomyopathy), which overlapped with the features of reported individuals having NONO LoF variants. Individuals 2 and 3 were monozygotic twins. Unlike in Individual 1, developmental delay with autistic features was the only symptom found in them. A fly experiment and cell localization experiment showed that the NONO variant impaired its proper intranuclear localization, leading to mild LoF. Our findings suggest that deleterious NONO missense variants should be taken into consideration when whole-exome sequencing is performed on male individuals with developmental delay with or without cardiac symptoms.

    DOI: 10.1038/s41598-023-27770-6

    PubMed

    researchmap

    その他リンク: https://www.nature.com/articles/s41598-023-27770-6

  • Direct evaluation of neuroaxonal degeneration with the causative genes of neurodegenerative diseases in <i>drosophila</i> using the automated axon quantification system, MeDUsA 査読 国際共著 国際誌

    Yohei Nitta, Hiroki Kawai, Ryuto Maki, Jiro Osaka, Satoko Hakeda-Suzuki, Yoshitaka Nagai, Karolína Doubková, Tomoko Uehara, Kenji Watanabe, Kenjiro Kosaki, Takashi Suzuki, Gaia Tavosanis, Atsushi Sugie

    Human Molecular Genetics   32 ( 9 )   1524 - 1538   2023年1月

     詳細を見る

    担当区分:筆頭著者   記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:Oxford University Press (OUP)  

    Abstract

    Drosophila is an excellent model organism for studying human neurodegenerative diseases (NDs). However, there is still almost no experimental system which could directly observe the degeneration of neurons and automatically quantify axonal degeneration. In this study, we created MeDUsA (a ‘method for the quantification of degeneration using fly axons’), a standalone executable computer program based on Python that combines a pre-trained deep-learning masking tool with an axon terminal counting tool. This software automatically quantifies the number of retinal R7 axons in Drosophila from a confocal z-stack image series. Using this software, we were able to directly demonstrate that axons were degenerated by the representative causative genes of NDs for the first time in Drosophila. The fly retinal axon is an excellent experimental system that is capable of mimicking the pathology of axonal degeneration in human NDs. MeDUsA rapidly and accurately quantifies axons in Drosophila photoreceptor neurons. It enables large-scale research into axonal degeneration, including screening to identify genes or drugs that mediate axonal toxicity caused by ND proteins and diagnose the pathological significance of novel variants of human genes in axons.

    DOI: 10.1093/hmg/ddac307

    PubMed

    researchmap

  • Studies of neurodegenerative diseases using <i>Drosophila</i> and the development of novel approaches for their analysis 招待 査読 国際誌

    Yohei Nitta, Atsushi Sugie

    Fly   16 ( 1 )   275 - 298   2022年12月

     詳細を見る

    担当区分:筆頭著者   記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:Informa UK Limited  

    The use of Drosophila in neurodegenerative disease research has contributed to the identification of modifier genes for the pathology. The basis for neurodegenerative disease occurrence in Drosophila is the conservation of genes across species and the ability to perform rapid genetic analysis using a compact brain. Genetic findings previously discovered in Drosophila can reveal molecular pathologies involved in human neurological diseases in later years. Disease models using Drosophila began to be generated during the development of genetic engineering. In recent years, results of reverse translational research using Drosophila have been reported. In this review, we discuss research on neurodegenerative diseases; moreover, we introduce various methods for quantifying neurodegeneration in Drosophila.

    DOI: 10.1080/19336934.2022.2087484

    PubMed

    researchmap

  • A Quantitative Model of Sporadic Axonal Degeneration in the Drosophila Visual System. 査読 国際誌

    Mélisande Richard, Karolína Doubková, Yohei Nitta, Hiroki Kawai, Atsushi Sugie, Gaia Tavosanis

    The Journal of neuroscience : the official journal of the Society for Neuroscience   42 ( 24 )   4937 - 4952   2022年6月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    In human neurodegenerative diseases, neurons undergo axonal degeneration months to years before they die. Here, we developed a system modeling early degenerative events in Drosophila adult photoreceptor cells. Thanks to the stereotypy of their axonal projections, this system delivers quantitative data on sporadic and progressive axonal degeneration of photoreceptor cells. Using this method, we show that exposure of adult female flies to a constant light stimulation for several days overcomes the intrinsic resilience of R7 photoreceptors and leads to progressive axonal degeneration. This was not associated with apoptosis. We furthermore provide evidence that loss of synaptic integrity between R7 and a postsynaptic partner preceded axonal degeneration, thus recapitulating features of human neurodegenerative diseases. Finally, our experiments uncovered a role of postsynaptic partners of R7 to initiate degeneration, suggesting that postsynaptic cells signal back to the photoreceptor to maintain axonal structure. This model can be used to dissect cellular and circuit mechanisms involved in the early events of axonal degeneration, allowing for a better understanding of how neurons cope with stress and lose their resilience capacities.SIGNIFICANCE STATEMENT Neurons can be active and functional for several years. In the course of aging and in disease conditions leading to neurodegeneration, subsets of neurons lose their resilience and start dying. What initiates this turning point at the cellular level is not clear. Here, we developed a model allowing to systematically describe this phase. The loss of synapses and axons represents an early and functionally relevant event toward degeneration. Using the ordered distribution of Drosophila photoreceptor axon terminals, we assembled a system to study sporadic initiation of axon loss and delineated a role for non-cell-autonomous activity regulation in the initiation of axon degeneration. This work will help shed light on key steps in the etiology of nonfamilial cases of neurodegenerative diseases.

    DOI: 10.1523/JNEUROSCI.2115-21.2022

    PubMed

    researchmap

  • De novo ARF3 variants cause neurodevelopmental disorder with brain abnormality. 査読 国際誌

    Masamune Sakamoto, Kazunori Sasaki, Atsushi Sugie, Yohei Nitta, Tetsuaki Kimura, Semra Gürsoy, Tayfun Cinleti, Mizue Iai, Toru Sengoku, Kazuhiro Ogata, Atsushi Suzuki, Nobuhiko Okamoto, Kazuhiro Iwama, Naomi Tsuchida, Yuri Uchiyama, Eriko Koshimizu, Atsushi Fujita, Kohei Hamanaka, Satoko Miyatake, Takeshi Mizuguchi, Masataka Taguri, Shuuichi Ito, Hidehisa Takahashi, Noriko Miyake, Naomichi Matsumoto

    Human molecular genetics   31 ( 1 )   69 - 81   2021年8月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    An optimal Golgi transport system is important for mammalian cells. The adenosine diphosphate (ADP) ribosylation factors (ARF) are key proteins for regulating cargo sorting at the Golgi network. In this family, ARF3 mainly works at the trans-Golgi network (TGN), and no ARF3-related phenotypes have yet been described in humans. We here report the clinical and genetic evaluations of two unrelated children with de novo pathogenic variants in the ARF3 gene: c.200A > T (p.Asp67Val) and c.296G > T (p.Arg99Leu). Although the affected individuals presented commonly with developmental delay, epilepsy, and brain abnormalities, there were differences in severity, clinical course, and brain lesions. In vitro subcellular localization assays revealed that the p.Arg99Leu mutant localized to Golgi apparatus, similar to the wild-type, whereas the p.Asp67Val mutant tended to show a disperse cytosolic pattern together with abnormally dispersed Golgi localization, similar to that observed in a known dominant negative variant (p.Thr31Asn). Pull-down assays revealed that the p.Asp67Val had a loss-of-function effect and the p.Arg99Leu variant had increased binding of the adaptor protein, Golgi-localized, γ-adaptin ear-containing, ARF-binding protein 1 (GGA1), supporting the gain of function. Furthermore, in vivo studies revealed that p.Asp67Val transfection led to lethality in flies. In contrast, flies expressing p.Arg99Leu had abnormal rough eye, as observed in the gain-of-function variant p.Gln71Leu. These data indicate that two ARF3 variants, the possibly loss-of-function p.Asp67Val and the gain-of-function p.Arg99Leu, both impair the Golgi transport system. Therefore, it may not be unreasonable that they showed different clinical features like diffuse brain atrophy (p.Asp67Val) and cerebellar hypoplasia (p.Arg99Leu).

    DOI: 10.1093/hmg/ddab224

    PubMed

    researchmap

  • Glial insulin regulates cooperative or antagonistic Golden goal/Flamingo interactions during photoreceptor axon guidance 査読 国際誌

    Hiroki Takechi, Satoko Hakeda-Suzuki, Yohei Nitta, Yuichi Ishiwata, Riku Iwanaga, Makoto Sato, Atsushi Sugie, Takashi Suzuki

    eLife   10   2021年3月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:eLife Sciences Publications, Ltd  

    Transmembrane protein Golden goal (Gogo) interacts with atypical cadherin Flamingo to direct R8 photoreceptor axons in the <italic>Drosophila</italic> visual system. However, the precise mechanisms underlying Gogo regulation during columnar- and layer-specific R8 axon targeting are unknown. Our studies demonstrated that the insulin secreted from surface and cortex glia switches the phosphorylation status of Gogo, thereby regulating its two distinct functions. Non-phosphorylated Gogo mediates the initial recognition of the glial protrusion in the center of the medulla column, whereas phosphorylated Gogo suppresses radial filopodia extension by counteracting Flamingo to maintain a one axon to one column ratio. Later, Gogo expression ceases during the midpupal stage, thus allowing R8 filopodia to extend vertically into the M3 layer. These results demonstrate that the long- and short-range signaling between the glia and R8 axon growth cones regulates growth cone dynamics in a stepwise manner, and thus shape the entire organization of the visual system.

    DOI: 10.7554/elife.66718

    PubMed

    researchmap

    その他リンク: https://cdn.elifesciences.org/articles/66718/elife-66718-v1.xml

  • Degeneration of dopaminergic neurons and impaired intracellular trafficking in Atp13a2 deficient zebrafish 査読 国際誌

    Hiromi Nyuzuki, Shinji Ito, Keisuke Nagasaki, Yohei Nitta, Noriko Matsui, Akihiko Saitoh, Hideaki Matsui

    IBRO Reports   9   1 - 8   2020年6月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:Elsevier BV  

    ATP13A2 is the autosomal recessive causative gene for juvenile-onset Parkinson's disease (PARK9, Parkinson's disease 9), also known as Kufor-Rakeb syndrome. The disease is characterized by levodopa-responsive Parkinsonism, supranuclear gaze palsy, spasticity, and dementia. Previously, we have reported that Atp13a2 deficient medaka fish showed dopaminergic neurodegeneration and lysosomal dysfunction, indicating that lysosome-autophagy impairment might be one of the key pathogeneses of Parkinson's disease. Here, we established Atp13a2 deficient zebrafish using CRISPR/Cas9 gene editing. We found that the number of TH + neurons in the posterior tuberculum and the locus coeruleus significantly reduced (dopaminergic neurons, 64 % at 4 months and 37 % at 12 months, p < 0.001 and p < 0.05, respectively; norepinephrine neurons, 52 % at 4 months and 40 % at 12 months, p < 0.001 and p < 0.05, respectively) in Atp13a2 deficient zebrafish, proving the degeneration of dopaminergic neurons. In addition, we found the reduction (60 %, p < 0.05) of cathepsin D protein expression in Atp13a2 deficient zebrafish using immunoblot. Transmission electron microscopy analysis using middle diencephalon samples from Atp13a2 deficient zebrafish showed lysosome-like bodies with vesicle accumulation and fingerprint-like structures, suggesting lysosomal dysfunction. Furthermore, a significant reduction (p < 0.001) in protein expression annotated with vesicle fusion with Golgi apparatus in Atp13a2 deficient zebrafish by liquid-chromatography tandem mass spectrometry suggested intracellular trafficking impairment. Therefore, we concluded that Atp13a2 deficient zebrafish exhibited degeneration of dopaminergic neurons, lysosomal dysfunction and the possibility of intracellular trafficking impairment, which would be the key pathogenic mechanism underlying Parkinson's disease.

    DOI: 10.1016/j.ibror.2020.05.002

    PubMed

    researchmap

  • Analysing the evolutional and functional differentiation of four types of Daphnia magna cryptochrome in Drosophila circadian clock. 査読 国際誌

    Yohei Nitta, Sayaka Matsui, Yukine Kato, Yosuke Kaga, Kenkichi Sugimoto, Atsushi Sugie

    Scientific reports   9 ( 1 )   8857 - 8857   2019年6月

     詳細を見る

    担当区分:筆頭著者   記述言語:英語   掲載種別:研究論文(学術雑誌)  

    Cryptochrome (CRY) plays an important role in the input of circadian clocks in various species, but gene copies in each species are evolutionarily divergent. Type I CRYs function as a photoreceptor molecule in the central clock, whereas type II CRYs directly regulate the transcriptional activity of clock proteins. Functions of other types of animal CRYs in the molecular clock remain unknown. The water flea Daphnia magna contains four Cry genes. However, it is still difficult to analyse these four genes. In this study, we took advantage of powerful genetic resources available from Drosophila to investigate evolutionary and functional differentiation of CRY proteins between the two species. We report differences in subcellular localisation of each D. magna CRY protein when expressed in the Drosophila clock neuron. Circadian rhythm behavioural experiments revealed that D. magna CRYs are not functionally conserved in the Drosophila molecular clock. These findings provide a new perspective on the evolutionary conservation of CRY, as functions of the four D. magna CRY proteins have diverse subcellular localisation levels. Furthermore, molecular clocks of D. magna have been evolutionarily differentiated from those of Drosophila. This study highlights the extensive functional diversity existing among species in their complement of Cry genes.

    DOI: 10.1038/s41598-019-45410-w

    PubMed

    researchmap

  • Identification of glaikit in a genome-wide expression profiling for axonal bifurcation of the mushroom body in Drosophila 査読

    Yohei Nitta, Atsushi Sugie

    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS   487 ( 4 )   898 - 902   2017年6月

     詳細を見る

    担当区分:筆頭著者, 責任著者   記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:ACADEMIC PRESS INC ELSEVIER SCIENCE  

    Axonal branching is a fundamental requirement for sending electrical signals to multiple targets. However, despite the importance of axonal branching in neural development and function, the molecular mechanisms that control branch formation are poorly understood. Previous studies have hardly addressed the intracellular signaling cascade of axonal bifurcation characterized by growth cone splitting. Recently we reported that DISCO interacting protein 2 (DIP2) regulates bifurcation of mushroom body axons in Drosophila melanogaster. DIP2 mutant displays ectopic bifurcations in alpha/beta neurons. Taking advantage of this phenomenon, we tried to identify genes involved in branching formation by comparing the transcriptome of wild type with that of DIP2 RNAi flies. After the microarray analysis, Glaikit (Gkt), a member of the phospholipase D superfamily, was identified as a downstream target of DIP2 by RNAi against gkt and qRT-PCR experiment. Single cell MARCM analysis of gkt mutant phenocopied the ectopic axonal branches observed in DIP2 mutant. Furthermore, a genetic analysis between gkt and DIP2 revealed that gkt potentially acts in parallel with DIP2. In conclusion, we identified a novel gene underlying the axonal bifurcation process. (C) 2017 The Authors. Published by Elsevier Inc.

    DOI: 10.1016/j.bbrc.2017.04.150

    Web of Science

    PubMed

    researchmap

  • DISCO interacting protein 2 determines direction of axon projection under the regulation of c-Jun N-terminal kinase in the Drosophila mushroom body 査読

    Yohei Nitta, Atsushi Sugie

    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS   487 ( 1 )   116 - 121   2017年5月

     詳細を見る

    担当区分:筆頭著者, 責任著者   記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:ACADEMIC PRESS INC ELSEVIER SCIENCE  

    Precisely controlled axon guidance for complex neuronal wiring is essential for appropriate neuronal function. c-Jun N-terminal kinase (INK) was found to play a role in axon guidance recently as well as in cell proliferation, protection and apoptosis. In spite of many genetic and molecular studies on these biological processes regulated by JNK, how JNK regulates axon guidance accurately has not been fully explained thus far. To address this question, we use the Drosophila mushroom body (MB) as a model since the alpha/beta axons project in two distinct directions. Here we show that DISCO interacting protein 2 (DIP2) is required for the accurate direction of axonal guidance. DIP2 expression is under the regulation of Basket (Bsk), the Drosophila homologue of JNK. We additionally found that the Bsk/DIP2 pathway is independent from the AP-I transcriptional factor complex pathway, which is directly activated by Bsk. In conclusion, our findings revealed DIP2 as a novel effector downstream of Bsk modulating the direction of axon projection. (C) 2017 The Authors. Published by Elsevier Inc.

    DOI: 10.1016/j.bbrc.2017.04.028

    Web of Science

    PubMed

    researchmap

  • DISCO Interacting Protein 2 regulates axonal bifurcation and guidance of Drosophila mushroom body neurons 査読

    Yohei Nitta, Daisuke Yamazaki, Atsushi Sugie, Makoto Hiroi, Tetsuya Tabata

    DEVELOPMENTAL BIOLOGY   421 ( 2 )   233 - 244   2017年1月

     詳細を見る

    担当区分:筆頭著者   記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:ACADEMIC PRESS INC ELSEVIER SCIENCE  

    Axonal branching is one of the key processes within the enormous complexity of the nervous system to enable a single neuron to send information to multiple targets. However, the molecular mechanisms that control branch formation are poorly understood. In particular, previous studies have rarely addressed the mechanisms underlying axonal bifurcation, in which axons form new branches via splitting of the growth cone. We demonstrate that DISCO Interacting Protein 2 (DIP2) is required for precise axonal bifurcation in Drosophila mushroom body (MB) neurons by suppressing ectopic bifurcation and regulating the guidance of sister axons. We also found that DIP2 localize to the plasma membrane. Domain function analysis revealed that the AMP-synthetase domains of DIP2 are essential for its function, which may involve exerting a catalytic activity that modifies fatty acids. Genetic analysis and subsequent biochemical analysis suggested that DIP2 is involved in the fatty acid metabolization of acyl-CoA. Taken together, our results reveal a function of DIP2 in the developing nervous system and provide a potential functional relationship between fatty acid metabolism and axon morphogenesis.

    DOI: 10.1016/j.ydbio.2016.11.015

    Web of Science

    PubMed

    researchmap

  • The NAV2 homolog Sickie regulates F-actin-mediated axonal growth in Drosophila mushroom body neurons via the non-canonical Rac-Cofilin pathway (vol 141, pg 4716, 2015) 査読

    Takashi Abe, Daisuke Yamazaki, Satoshi Murakami, Makoto Hiroi, Yohei Nitta, Yuko Maeyama, Tetsuya Tabata

    DEVELOPMENT   142 ( 5 )   1021 - 1021   2015年3月

     詳細を見る

    記述言語:英語   出版者・発行元:COMPANY OF BIOLOGISTS LTD  

    DOI: 10.1242/dev.122713

    Web of Science

    PubMed

    researchmap

  • Functional analysis of RRAS2 pathogenic variants with a Noonan-like phenotype 査読

    Takaya Iida, Arisa Igarashi, Kae Fukunaga, Taiga Aoki, Tomomi Hidai, Kumiko Yanagi, Masahiko Yamamori, Kazuhito Satou, Hayato Go, Tomoki Kosho, Ryuto Maki, Takashi Suzuki, Yohei Nitta, Atsushi Sugie, Yoichi Asaoka, Makoto Furutani-Seiki, Tetsuaki Kimura, Yoichi Matsubara, Tadashi Kaname

    2024年3月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    DOI: 10.3389/fgene.2024.1383176

    researchmap

  • Identification of genes regulating stimulus-dependent synaptic assembly in &lt;i&gt;Drosophila&lt;/i&gt; using an automated synapse quantification system 査読

    Jiro Osaka, Haruka Yasuda, Yusuke Watanuki, Yuya Kato, Yohei Nitta, Atsushi Sugie, Makoto Sato, Takashi Suzuki

    Genes &amp; Genetic Systems   2023年

     詳細を見る

    掲載種別:研究論文(学術雑誌)   出版者・発行元:Genetics Society of Japan  

    DOI: 10.1266/ggs.22-00114

    researchmap

  • MeDUsA: A novel system for automated axon quantification to evaluate neuroaxonal degeneration

    Yohei Nitta, Hiroki Kawai, Jiro Osaka, Satoko Hakeda-Suzuki, Yoshitaka Nagai, Karolína Doubková, Takashi Suzuki, Gaia Tavosanis, Atsushi Sugie

    2021年10月

     詳細を見る

    担当区分:筆頭著者   記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:Cold Spring Harbor Laboratory  

    Abstract

    Background

    Drosophila is an excellent model organism for studying human neurodegenerative diseases (NDs), and the rough eye phenotype (REP) assay is a convenient experimental system for analysing the toxicity of ectopically expressed human disease genes. However, the association between REP and axonal degeneration, an early sign of ND, remains unclear. To address this question, we developed a method to evaluate axonal degeneration by quantifying the number of retinal R7 axons in Drosophila; however, it requires expertise and is time-consuming. Therefore, there is a need for an easy-to-use software that can automatically quantify the axonal degeneration.

    Result

    We created MeDUsA (a ‘method for the quantification of degeneration using fly axons’), which is a standalone executable computer program based on Python that combines a pre-trained deep-learning masking tool with an axon terminal counting tool. This software automatically quantifies the number of axons from a confocal z-stack image series. Using this software, we have demonstrated for the first time directly that axons degenerate when the causative factors of NDs (αSyn, Tau, TDP-43, HTT) were expressed in the Drosophila eye. Furthermore, we compared axonal toxicity of the representative causative genes of NDs and their pathological alleles with REP and found no significant correlation between them.

    Conclusions

    MeDUsA rapidly and accurately quantifies axons in Drosophila eye. By simplifying and automating time-consuming manual efforts requiring significant expertise, it enables large-scale, complex research efforts on axonal degeneration, such as screening to identify genes or drugs that mediate axonal toxicity caused by ND disease proteins.

    DOI: 10.1101/2021.10.25.465674

    researchmap

  • 博士後期課程入学者数と教員の研究業績に関する実態調査 査読

    新田陽平, 船山理恵, 杉江淳, 平井克之

    新潟大学高等教育研究   8   1 - 8   2021年3月

     詳細を見る

    担当区分:筆頭著者   記述言語:日本語   掲載種別:研究論文(大学,研究機関等紀要)   出版者・発行元:新潟大学教育・学生支援機構  

    CiNii Article

    CiNii Books

    researchmap

  • The NAV2 homolog Sickie regulates F-actin-mediated axonal growth in Drosophila mushroom body neurons via the non-canonical Rac-Cofilin pathway 査読

    Takashi Abe, Daisuke Yamazaki, Satoshi Murakami, Makoto Hiroi, Yohei Nitta, Yuko Maeyama, Tetsuya Tabata

    DEVELOPMENT   141 ( 24 )   4716 - 4728   2014年12月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:COMPANY OF BIOLOGISTS LTD  

    The Rac-Cofilin pathway is essential for cytoskeletal remodeling to control axonal development. Rac signals through the canonical Rac-Pak-LIMK pathway to suppress Cofilin-dependent axonal growth and through a Pak-independent non-canonical pathway to promote outgrowth. Whether this non-canonical pathway converges to promote Cofilin-dependent F-actin reorganization in axonal growth remains elusive. We demonstrate that Sickie, a homolog of the human microtubule-associated protein neuron navigator 2, cell-autonomously regulates axonal growth of Drosophila mushroom body (MB) neurons via the non-canonical pathway. Sickie was prominently expressed in the newborn F-actin-rich axons of MB neurons. A sickie mutant exhibited axonal growth defects, and its phenotypes were rescued by exogenous expression of Sickie. We observed phenotypic similarities and genetic interactions among sickie and Rac-Cofilin signaling components. Using the MARCM technique, distinct F-actin and phospho-Cofilin patterns were detected in developing axons mutant for sickie and Rac-Cofilin signaling regulators. The upregulation of Cofilin function alleviated the axonal defect of the sickie mutant. Epistasis analyses revealed that Sickie suppresses the LIMK overexpression phenotype and is required for Pak-independent Rac1 and Slingshot phosphatase to counteract LIMK. We propose that Sickie regulates F-actin-mediated axonal growth via the non-canonical Rac-Cofilin pathway in a Slingshot-dependent manner.

    DOI: 10.1242/dev.113308

    Web of Science

    PubMed

    researchmap

▶ 全件表示

MISC

  • 【代謝】代謝と神経 PI(4,5)P2代謝と神経変性の分子基盤

    新田 陽平, 小坂 二郎, 杉江 淳

    生体の科学   74 ( 5 )   422 - 423   2023年10月

     詳細を見る

    記述言語:日本語   出版者・発行元:(公財)金原一郎記念医学医療振興財団  

    <文献概要>ホスファチジルイノシトール4,5-ビスリン酸[PI(4,5)P2]は生体膜を構成するリン脂質の一種であり,細胞膜に局在して多種多様な機能を発揮する。また,PI(4,5)P2は分解されて二次メッセンジャーとしても機能する。本稿では,PI(4,5)P2の機能を紹介し,その代謝がいかに調節されているか,そしてその調節異常が引き起こす神経変性の分子基盤を述べる。

    researchmap

共同研究・競争的資金等の研究

  • ショウジョウバエモデルを用いた脳-腸間におけるαシヌクレイン伝播機構の解明

    2023年 - 2027年

    制度名:医学系研究助成 精神・神経・脳領域

    提供機関:公益財団法人 武田科学振興財団

    新田 陽平

      詳細を見る

  • パーキンソン病はαシヌクレインの摂食によって引き起こされるのか?:ショウジョウバエモデルの樹立

    研究課題/領域番号:2022-4030

    2022年4月 - 2023年2月

    制度名:笹川科学研究助成

    研究種目:学術研究部門 生物系

    提供機関:公益財団法人日本科学協会

      詳細を見る

    担当区分:研究代表者 

    researchmap

  • αシヌクレイン伝播モデルショウジョウバエを用いた凝集体放出機構の解明

    研究課題/領域番号:21K15619

    2021年4月 - 2024年3月

    制度名:科学研究費助成事業 若手研究

    研究種目:若手研究

    提供機関:日本学術振興会

    新田 陽平

      詳細を見る

    配分額:4680000円 ( 直接経費:3600000円 、 間接経費:1080000円 )

    近年、神経変性疾患の進行の分子病態の1つとして原因タンパク質の凝集が特定の神経細胞から別の細胞へと伝播することが挙げられている。本研究では、従来の伝播研究では切り込むことが出来ていなかった、病態伝播に決定的な分子の同定及び伝播の分子機序を解明することを目的とする。この目的を達成するためにこれまでに申請者は、ショウジョウバエの視覚系神経とパーキンソン病の原因タンパクであるαシヌクレインを用いて独自の非侵襲的伝播モデルの樹立を試みた。このモデルでは、全神経細胞でGFPが融合した正常型ヒトαシヌクレインを発現している中、視覚系神経でのみmCherryが融合した病変型ヒトαシヌクレインを発現しており、これまでの研究でシナプス前後細胞間でαシヌクレインの凝集状態がbidirectionalに移動していることが示唆されている。
    本年度では、シナプス前後細胞での凝集の移動を厳密に確認するために、視覚系神経のシナプス前細胞とシナプス後細胞で特異的に病変型αシヌクレインと野生型αシヌクレインを発現する遺伝子組み換えショウジョウバエを樹立した。その結果、シナプス後細胞に由来するαシヌクレインがシナプス前細胞の軸索末端で凝集構造を形成していることが明らかとなった。一方で、シナプス前細胞からシナプス後細胞へのanterogradeなαシヌクレイン凝集状態の移動は、異常伸展した軸索の末端に蓄積していたシナプス後細胞に由来するαシヌクレイン凝集が、軸索の変性後も残存し続けていたのを誤解釈していた可能性が示唆された。これらの結果は、本モデルではαシヌクレインの凝集状態がシナプス後細胞からシナプス前細胞へとretrogradeに移動している可能性を強く示唆している。

    researchmap

  • タウオパチー病態機序解明を目指すゲノムリソースの網羅的機能解析

    研究課題/領域番号:21H02837

    2021年4月 - 2024年3月

    制度名:科学研究費助成事業

    研究種目:基盤研究(B)

    提供機関:日本学術振興会

    杉江 淳, 池内 健, 新田 陽平

      詳細を見る

    配分額:17680000円 ( 直接経費:13600000円 、 間接経費:4080000円 )

    アルツハイマー病をはじめとするタウオパチーは,微小管結合タンパク質のタウが細胞内に異常蓄積することが定義されているが,遺伝的要因の大多数は未だ不明である.私たちが持つ国内最大規模のタウオパチーゲノムリソースを解析し,アリル頻度の少ないミスセンス変異見出した。その中に未知なる病因関連遺伝子が存在すると考えた.本研究では,これらの変異の中からタウオパチーに関連する機能的な変異を特定し,本疾患の病態像を明らかにする。これまでに私たちはTau、SORL1、BSN、ABCA7の変異を発現させるショウジョウバエの遺伝子組換え体を作製した。

    researchmap

  • 脂質代謝の破綻による加齢性神経変性の分子基盤解明

    2018年4月 - 2021年3月

    制度名:若手研究

    新田陽平

      詳細を見る

    担当区分:研究代表者  資金種別:競争的資金

    配分額:4160000円 ( 直接経費:3200000円 、 間接経費:960000円 )

    researchmap

  • 神経変性疾患タンパク質はどの様に伝播するか:放出機構の包括的解析からのアプローチ

    2018年4月 - 2021年3月

    制度名:特別研究員奨励費

    新田陽平

      詳細を見る

    担当区分:研究代表者  資金種別:競争的資金

    配分額:4030000円 ( 直接経費:3100000円 、 間接経費:930000円 )

    researchmap

  • ショウジョウバエ嗅覚記憶中枢をモデルとした神経回路形成と機能発現の統合的解析

    2011年4月 - 2014年3月

    制度名:特別研究員奨励費

    新田陽平

      詳細を見る

    担当区分:研究代表者  資金種別:競争的資金

    配分額:1900000円 ( 直接経費:1900000円 )

    researchmap

▶ 全件表示