2024/10/12 更新

写真a

エグチ マサトシ
江口 正敏
EGUCHI Masatoshi
所属
教育研究院 医歯学系 特任助教
医歯学総合研究科 特任助教
職名
特任助教
外部リンク

学位

  • 博士(理学) ( 東京大学 )

研究キーワード

  • 生物発光

  • バイオイメージング

  • ルシフェラーゼ

  • タンパク質

研究分野

  • ナノテク・材料 / 生体化学

  • その他 / その他  / 分析化学

  • ライフサイエンス / 分子生物学

経歴(researchmap)

  • 新潟大学   大学院医歯学総合研究科   特任助教

    2024年3月 - 現在

      詳細を見る

  • 東京大学   大学院理学系研究科 化学専攻   特任研究員

    2022年4月 - 2024年2月

      詳細を見る

経歴

  • 新潟大学   医歯学総合研究科   特任助教

    2024年3月 - 現在

  • 新潟大学   教育研究院 医歯学系   特任助教

    2024年3月 - 現在

 

論文

  • Split Luciferase-Fragment Reconstitution for Unveiling RNA Localization and Dynamics in Live Cells. 査読 国際誌

    Masatoshi Eguchi, Hideaki Yoshimura, Yoshibumi Ueda, Takeaki Ozawa

    ACS sensors   8 ( 11 )   4055 - 4063   2023年11月

     詳細を見る

    担当区分:筆頭著者   記述言語:英語   掲載種別:研究論文(学術雑誌)  

    The intracellular distribution and dynamics of RNAs play pivotal roles in various physiological phenomena. The ability to monitor the amount and localization of endogenous RNAs in living cells allows for elucidating the mechanisms of various intracellular events. Protein-based fluorescent RNA probes are now widely used to visualize and analyze RNAs in living cells. However, continuously monitoring the temporal changes in RNA localization and dynamics in living cells is challenging. In this study, we developed a bioluminescent probe for spatiotemporal monitoring of RNAs in living cells by using a split-luciferase reconstitution technique. The probe consists of split fragments of a bioluminescent protein, NanoLuc, connected with RNA-binding protein domains generated from a custom-made mutation of a PUM-HD. The probe showed rapid luminescence intensity changes in response to an increase or decrease in the amount of a target RNA in vitro. In live-cell imaging, temporal alteration of the intracellular distribution of endogenous β-actin mRNA was visualized in response to extracellular stimulation. Furthermore, the application of the probe to the visualization of the specific localization of β-actin mRNA in primary hippocampal neurons was conducted. These results demonstrate the capability of the bioluminescent RNA probe to monitor the changes in localization, dynamics, and the amount of target RNA in living cells.

    DOI: 10.1021/acssensors.3c01080

    PubMed

    researchmap

  • A Series of Furimazine Derivatives for Sustained Live-Cell Bioluminescence Imaging and Application to the Monitoring of Myogenesis at the Single-Cell Level. 査読 国際誌

    Mariko Orioka, Masatoshi Eguchi, Yuki Mizui, Yuma Ikeda, Akihiro Sakama, Qiaojing Li, Hideaki Yoshimura, Takeaki Ozawa, Daniel Citterio, Yuki Hiruta

    Bioconjugate chemistry   33 ( 3 )   496 - 504   2022年3月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    Bioluminescence (BL) imaging, which utilizes light emitted through the enzymatic reaction of luciferase oxidizing its substrate luciferin, enables sensitive and noninvasive monitoring of life phenomena. Herein, we developed a series of caged furimazine (FMZ) derivatives by introducing a protective group at the C-3 position and a hydroxy group at the C-6 phenyl ring to realize long-term live-cell BL imaging based on the NanoLuc (NLuc)/NanoKAZ (NKAZ)-FMZ system. The membrane permeability and cytotoxicity of the substrates were evaluated and related to their hydrophobicity. Among the series, the derivative with the bulkiest protective group (adamantanecarbonyl group) and a hydroxy substituent (named Ad-FMZ-OH) showed significantly prolonged and constant BL signal in cells expressing NLuc compared to the native FMZ substrate. This derivative enabled continuous BL imaging at the single-cell level for 24 h. Furthermore, we applied Ad-FMZ-OH to BL imaging of myocyte fusion and succeeded in the consecutive and sensitive monitoring at a single-cell level over a day. In summary, NLuc/NKAZ-caged FMZ derivatives have the potential to be applied to live-cell BL imaging of various life phenomena that require long-term observation.

    DOI: 10.1021/acs.bioconjchem.2c00035

    PubMed

    researchmap

  • Long-term single cell bioluminescence imaging with C-3 position protected coelenterazine analogues. 査読 国際誌

    Yuki Mizui, Masatoshi Eguchi, Masanobu Tanaka, Yuma Ikeda, Hideaki Yoshimura, Takeaki Ozawa, Daniel Citterio, Yuki Hiruta

    Organic & biomolecular chemistry   19 ( 3 )   579 - 586   2021年1月

     詳細を見る

    担当区分:筆頭著者   記述言語:英語   掲載種別:研究論文(学術雑誌)  

    Bioluminescence is a powerful imaging modality for monitoring biological phenomena both in vitro and in vivo. Bioluminescence imagin (BLI) is becoming a seamless imaging technology covering the range from cells to organs of small animals. Long-term imaging at the single cell level would lead to a true understanding of the dynamics of life phenomena. This work presents a long-term single cell bioluminescence imaging technology accomplished with C-3 position protected furimazines (FMZs), a CTZ analogues, which generate intense blue emission when paired with a highly stable engineered luciferase, Nanoluc. Four types of FMZs protected at the C-3 position have been synthesized. The type and steric bulkiness of the protection group strongly contributed to storage stability and the kinetics of the bioluminescence reactions of the analogues in human living cells. In particular, two developed FMZ analogues resulted in significantly longer bioluminescence emission with higher S/N ratio than FMZ at single cell level. Long-term bioluminescence single cell imaging technology with the developed FMZ analogues will lead to seamless imaging in the range from cells to organs of small animals.

    DOI: 10.1039/d0ob02020f

    PubMed

    researchmap

  • Spatiotemporal analysis with a genetically encoded fluorescent RNA probe reveals TERRA function around telomeres. 査読 国際誌

    Toshimichi Yamada, Hideaki Yoshimura, Rintaro Shimada, Mitsuru Hattori, Masatoshi Eguchi, Takahiro K Fujiwara, Akihiro Kusumi, Takeaki Ozawa

    Scientific reports   6   38910 - 38910   2016年12月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    Telomeric repeat-containing RNA (TERRA) controls the structure and length of telomeres through interactions with numerous telomere-binding proteins. However, little is known about the mechanism by which TERRA regulates the accessibility of the proteins to telomeres, mainly because of the lack of spatiotemporal information of TERRA and its-interacting proteins. We developed a fluorescent probe to visualize endogenous TERRA to investigate its dynamics in living cells. Single-particle fluorescence imaging revealed that TERRA accumulated in a telomere-neighboring region and trapped diffusive heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1), thereby inhibiting hnRNPA1 localization to the telomere. These results suggest that TERRA regulates binding of hnRNPA1 to the telomere in a region surrounding the telomere, leading to a deeper understanding of the mechanism of TERRA function.

    DOI: 10.1038/srep38910

    PubMed

    researchmap