2021/08/06 更新

写真a

カトウ アキラ
加藤 朗
KATO Akira
所属
教育研究院 自然科学系 地球・生物科学系列 准教授
自然科学研究科 生命・食料科学専攻 准教授
理学部 理学科 准教授
職名
准教授
外部リンク

学位

  • 博士(理学) ( 1995年3月   総合研究大学院大学 )

研究キーワード

  • Plant physiology

  • 植物生理学

研究分野

  • ライフサイエンス / 植物分子、生理科学

経歴(researchmap)

  • - Faculty of Science, Niigata University Associate professor

    2000年

      詳細を見る

  • - 新潟大学理学部 助教授

    2000年

      詳細を見る

  • 新潟大学   理学部

    1998年 - 1999年

      詳細を見る

  • 新潟大学理学部 助手   Faculty of Science

    1998年 - 1999年

      詳細を見る

  • JSPS research associate

    1998年

      詳細を見る

  • 未来開拓推進事業 リサーチアソシエイト

    1998年

      詳細を見る

  • 基礎生物学研究所

    1995年 - 1998年

      詳細を見る

  • 基礎生物学研究所 非常勤研究員

    1995年 - 1998年

      詳細を見る

▶ 全件表示

経歴

  • 新潟大学   理学部 理学科   准教授

    2017年4月 - 現在

  • 新潟大学   自然科学研究科 生命・食料科学専攻   准教授

    2004年4月 - 現在

  • 新潟大学   自然科学研究科 生命・食料科学専攻   准教授

    2004年4月 - 現在

  • 新潟大学   生物学科   准教授

    2004年4月 - 2017年3月

  • 新潟大学   理学部   助手

    1998年9月 - 1999年12月

学歴

  • 総合研究大学院大学

    - 1995年

      詳細を見る

  • 総合研究大学院大学   生命科学研究科   分子生物機構論

    - 1995年

      詳細を見る

    国名: 日本国

    researchmap

所属学協会

 

書籍等出版物

  • 標識を付けたタンパク質の植物での発現,シロイヌナズナでの発現と細胞内局在性の解析

    秀潤社,植物細胞工学シリ-ズ「植物のタンパク質実験プロトコ-ル」  1998年 

     詳細を見る

MISC

  • Molecular characterization of an Arabidopsis acyl-coenzyme A synthetase localized on glyoxysomal membranes

    H Hayashi, L De Bellis, Y Hayashi, K Nito, A Kato, M Hayashi, Hara-Nishimura, I, M Nishimura

    PLANT PHYSIOLOGY   130 ( 4 )   2019 - 2026   2002年12月

     詳細を見る

    記述言語:英語   出版者・発行元:AMER SOC PLANT BIOLOGISTS  

    In higher plants, fat-storing seeds utilize storage lipids as a source of energy during germination. To enter the beta-oxidation pathway, fatty acids need to be activated to acyl-coenzyme As (CoAs) by the enzyme acyl-CoA synthetase (ACS; EC 6.2.1.3). Here, we report the characterization of an Arabidopsis cDNA clone encoding for a glyoxysomal acyl-CoA synthetase designated AtLACS6. The cDNA sequence is 2,106 bp long and it encodes a polypeptide of 701 amino acids with a calculated molecular mass of 76,617 D. Analysis of the amino-terminal sequence indicates that acyl-CoA synthetase is synthesized as a larger precursor containing a cleavable amino-terminal presequence so that the mature polypeptide size is 663 amino acids. The presequence shows high similarity to the typical PTS2 (peroxisomal targeting signal 2). The AtLACS6 also shows high amino acid identity to prokaryotic and eukaryotic fatty acyl-CoA synthetases. Immunocytochemical and cell fractionation analyses indicated that the AtLACS6 is localized on glyoxysomal membranes. AtLACS6 was overexpressed in insect cells and purified to near homogeneity. The purified enzyme is particularly active on long-chain fatty acids (C16:0). Results from immunoblot analysis revealed that the expression of both AtLACS6 and beta-oxidation enzymes coincide with fatty acid degradation. These data suggested that AtLACS6 might play a regulatory role both in fatty acid import into glyoxysomes by making a complex with other factors, e.g. PMP70, and in fatty acid beta-oxidation activating the fatty acids.

    DOI: 10.1104/pp.012955

    Web of Science

    researchmap

  • Molecular characterization of an Arabidopsis acyl-coenzyme A synthetase localized on glyoxysomal membranes

    H Hayashi, L De Bellis, Y Hayashi, K Nito, A Kato, M Hayashi, Hara-Nishimura, I, M Nishimura

    PLANT PHYSIOLOGY   130 ( 4 )   2019 - 2026   2002年12月

     詳細を見る

    記述言語:英語   出版者・発行元:AMER SOC PLANT BIOLOGISTS  

    In higher plants, fat-storing seeds utilize storage lipids as a source of energy during germination. To enter the beta-oxidation pathway, fatty acids need to be activated to acyl-coenzyme As (CoAs) by the enzyme acyl-CoA synthetase (ACS; EC 6.2.1.3). Here, we report the characterization of an Arabidopsis cDNA clone encoding for a glyoxysomal acyl-CoA synthetase designated AtLACS6. The cDNA sequence is 2,106 bp long and it encodes a polypeptide of 701 amino acids with a calculated molecular mass of 76,617 D. Analysis of the amino-terminal sequence indicates that acyl-CoA synthetase is synthesized as a larger precursor containing a cleavable amino-terminal presequence so that the mature polypeptide size is 663 amino acids. The presequence shows high similarity to the typical PTS2 (peroxisomal targeting signal 2). The AtLACS6 also shows high amino acid identity to prokaryotic and eukaryotic fatty acyl-CoA synthetases. Immunocytochemical and cell fractionation analyses indicated that the AtLACS6 is localized on glyoxysomal membranes. AtLACS6 was overexpressed in insect cells and purified to near homogeneity. The purified enzyme is particularly active on long-chain fatty acids (C16:0). Results from immunoblot analysis revealed that the expression of both AtLACS6 and beta-oxidation enzymes coincide with fatty acid degradation. These data suggested that AtLACS6 might play a regulatory role both in fatty acid import into glyoxysomes by making a complex with other factors, e.g. PMP70, and in fatty acid beta-oxidation activating the fatty acids.

    DOI: 10.1104/pp.012955

    Web of Science

    researchmap

  • Distribution and characterization of peroxisues in Arabidopsis by visualization with GFP: Dynamic morphology and action dependent movement

    Plant and Cell Physiology   48 ( 331-341 )   2002年

     詳細を見る

  • Distribution and characterization of peroxisues in Arabidopsis by visualization with GFP: Dynamic morphology and action dependent movement

    Plant and Cell Physiology   48 ( 331-341 )   2002年

     詳細を見る

  • Transport of peroxisomal profeins that synthesized as largy precursors in plauts.

    Cell Biochemistry and Biophysics   32 ( 269-275 )   2000年

     詳細を見る

  • Transport of peroxisomal profeins that synthesized as largy precursors in plauts.

    Cell Biochemistry and Biophysics   32 ( 269-275 )   2000年

     詳細を見る

  • Oligomeric proteins containing N-terminal targeting signals are imported into peroxisomes in transgenic Arabidopsis

    A Kato, M Hayashi, M Nishimura

    PLANT AND CELL PHYSIOLOGY   40 ( 6 )   586 - 591   1999年6月

     詳細を見る

    記述言語:英語   出版者・発行元:JAPANESE SOC PLANT PHYSIOLOGISTS  

    Employing transgenic Arabidopsis plants, we analyzed the mechanism for the translocation of peroxisomal proteins from the cytosol into the matrix that is mediated by the N-terminal targeting signal. A hybrid Arabidopsis variety was generated which accumulates two kinds of originally bacterial proteins, P-glucuronidase (GUS) and a GUS chimeric protein designated as CS-Delta C42-GUS, that carries the N-terminal targeting signal for glyoxysomal citrate synthase. Because the CS-Delta C42-GUS is targeted to peroxisomes but had never been observed to be processed to produce the mature protein, it can be distinguished from the GUS protein by its molecular size. Cell fractionation analyses showed that the native GUS protein, although lacking the targeting signal, was co-localized with the CS-Delta C42-GUS protein in the peroxisomes of the hybrid plant. It is suggested that the native GUS protein forms oligomeric structures with the peroxisome-targeted chimeric proteins and can therefore be transported into peroxisomes. Sucrose density gradient centrifugation revealed that the native GUS and the chimeric GUS indeed are present both as a dimer and a tetramer in the Arabidopsis hybrid variety.

    Web of Science

    researchmap

  • Glyoxysomal malate dehydrogenase in pumpkin: Cloning of a cDNA and functional analysis of its presequence

    A Kato, Y Takeda-Yoshikawa, M Hayashi, M Kondo, Hara-Nishimura, I, M Nishimura

    PLANT AND CELL PHYSIOLOGY   39 ( 2 )   186 - 195   1998年2月

     詳細を見る

    記述言語:英語   出版者・発行元:JAPANESE SOC PLANT PHYSIOLOGISTS  

    Glyoxysomal malate dehydrogenase (gMDH) is an enzyme of the glyoxylate cycle that participates in degradation of storage oil, We have cloned a cDNA for gMDH from etiolated pumpkin cotyledons that encodes a polypeptide consisting of 356 amino acid residues, The nucleotide and N-terminal amino acid sequences revealed that gMDH is synthesized as a precursor with an N-terminal extrapeptide, The N-terminal presequence of 36 amino acid residues contains two regions homologous to those of other microbody proteins, which are also synthesized as large precursors, To investigate the functions of the N-terminal presequence of gMDH, we generated transgenic Arabidopsis that expressed a chimeric protein consisting of beta-glucuronidase and the N-terminal region of gMDH. Immunological and immunocytochemical studies revealed that the chimeric protein was imported into microbodies such as glyoxysomes and leaf peroxisomes and was then subsequently processed, Site-directed mutagenesis studies showed that the conserved amino acids in the N-terminal presequence, Arg-10 and His-17, function as recognition sites for the targeting to plant microbodies, and Cys-36 in the presequence is responsible for its processing. These results correspond to those from the analyses of glyoxysomal citrate synthase (gCS), which was also synthesized as a large precursor, suggesting that common mechanisms that can recognize the targeting or the processing of gMDH and gCS function in higher plant cells.

    Web of Science

    researchmap

  • Molecular characterization of a glyoxysomal long-chain acyl-CoA oxidase that is synthesized as a precursor of higher molecular mass in pumpkin. (共著)

    The Journal of Biological Chemistry   273 ( 14 )   8301 - 8307   1998年

  • Targeting and processing of a chimeric protein with the N-terminal presequence of the precursor to glyoxysomal citrate synthase

    A Kato, M Hayashi, M Kondo, M Nishimura

    PLANT CELL   8 ( 9 )   1601 - 1611   1996年9月

     詳細を見る

    記述言語:英語   出版者・発行元:AMER SOC PLANT PHYSIOLOGISTS  

    Glyoxysomal citrate synthase in pumpkin is synthesized as a precursor that has a cleavable presequence at its N-terminal end. To investigate the role of the presequence in the transport of the protein to the microbodies, we generated transgenic Arabidopsis plants that expressed beta-glucuronidase with the N-terminal presequence of the precursor to the glyoxysomal citrate synthase of pumpkin. Immunogold labeling and cell fractionation studies showed that the chimeric protein was transported into microbodies and subsequently was processed. The chimeric protein was transported to functionally different microbodies, such as glyoxysomes, leaf peroxisomes, and unspecialized microbodies. These observations indicated that the transport of glyoxysomal citrate synthase is mediated by its N-terminal presequence and that the transport system is functional in all plant microbodies. Site-directed mutagenesis of the conserved amino acids in the presequence caused abnormal targeting and inhibition of processing of the chimeric protein, suggesting that the conserved amino acids in the presequence are required for recognition of the target or processing.

    DOI: 10.1105/tpc.8.9.1601

    Web of Science

    PubMed

    CiNii Article

    researchmap

  • Transport of chimeric proteins that contain a carboxy-terminal targeting signal into plant microbodies

    M Hayashi, M Aoki, A Kato, M Kondo, M Nishimura

    PLANT JOURNAL   10 ( 2 )   225 - 234   1996年8月

     詳細を見る

    記述言語:英語   出版者・発行元:BLACKWELL SCIENCE LTD  

    Malate synthase is a glyoxysome-specific enzyme. The carboxy-terminal tripeptide of the enzyme is Ser-Arg-Leu (SRL), which is known to function as a peroxisomal targeting signal in mammalian cells. To analyze the function of the carboxy-terminal amino acids of pumpkin malate synthase in plant cells, a chimeric gene was con structed that encoded a fusion protein which consisted of beta-glucuronidase and the carboxyl terminus of the enzyme. The fusion protein was expressed and accumulated in transgenic Arabidopsis that had been transformed with the chimeric gene. Immunocytochemical analysis of the transgenic plants revealed that the carboxy-terminal five amino acids of pumpkin malate synthase were sufficient for transport of the fusion protein into glyoxysomes in etiolated cotyledons, into leaf peroxisomes in green cotyledons and in mature leaves, and into unspecialized microbodies in roots, although the fusion protein was no longer transported into microbodies when SRL at the carboxyl terminus was deleted. Transport of proteins into glyoxysomes and leaf peroxisomes was also observed when the carboxy-terminal amino acids of the fusion protein were changed from SRL to SKL, SRM, ARL or PRL. The results suggest that tripeptides with S, A or P at the -3 position, K or R at the -2 position, and L or M at the carboxyl terminal position can function as a targeting signal for three kinds of plant microbody.

    DOI: 10.1046/j.1365-313X.1996.10020225.x

    Web of Science

    researchmap

  • cDNA cloning and expression of a gene for 3-ketoacyl-CoA thiolase in pumpkin cotyledons

    A Kato, M Hayashi, Y Takeuchi, M Nishimura

    PLANT MOLECULAR BIOLOGY   31 ( 4 )   843 - 852   1996年7月

     詳細を見る

    記述言語:英語   出版者・発行元:KLUWER ACADEMIC PUBL  

    A cDNA clone for 3-ketoacyl-CoA thiolase (EC 2.3.1.16) was isolated from a lambda gt11 cDNA library constructed from the poly(A)(+) RNA of etiolated pumpkin cotyledons. The cDNA insert contained 1682 nucleotides and encoded 461 amino acid residues. A study of the expression in vitro of the cDNA and analysis of the amino-terminal sequence of the protein indicated that pumpkin thiolase is synthesized as a precursor which has a cleavable amino-terminal presequence of 33 amino acids. The amino-terminal presequence was highly homologous to typical amino-terminal et proteins to microbodies. Immunoblot analysis showed that the amount of thiolase increased markedly during germination but decreased dramatically during the light-inducible transition of microbodies from glyoxysomes to leaf peroxisomes. By contrast, the amount of mRNA increased temporarily during the early stage of germination. In senescing cotyledons, the levels of the thiolase mRNA and protein increased again with the reverse transition of microbodies from leaf peroxisomes to glyoxysomes, but the pattern of accumulation of the protein was slightly different from that of malate synthase. These results indicate that expression of the thiolase is regulated in a similar manner to that of other glyoxysomal enzymes, such as malate synthase and citrate synthase, during seed germination and post-germination growth. By contrast, during senescence, expression of the thiolase is regulated in a different manner from that of other glyoxysomal enzymes.

    DOI: 10.1007/BF00019471

    Web of Science

    PubMed

    CiNii Article

    researchmap

  • MOLECULAR CHARACTERIZATION OF A GLYOXYSOMAL CITRATE SYNTHASE THAT IS SYNTHESIZED AS A PRECURSOR OF HIGHER MOLECULAR-MASS IN PUMPKIN

    A KATO, M HAYASHI, H MORI, M NISHIMURA

    PLANT MOLECULAR BIOLOGY   27 ( 2 )   377 - 390   1995年1月

     詳細を見る

    記述言語:英語   出版者・発行元:SPRINGER  

    A cDNA clone for glyoxysomal citrate synthase (gCS) was isolated from a lambda gt11 cDNA library prepared from etiolated pumpkin cotyledons. The cDNA of 1989 bp consisted of a 1548 bp open reading frame that encoded 516 amino acid residues. The deduced amino acid sequence of gCS did not have a typical peroxisomal targeting signal at its carboxyl terminal. A study of expression in vitro of the cDNA and an analysis of the amino-terminal sequence of the citrate synthase indicated that gCS is synthesized as a larger precursor that has a cleavable amino-terminal presequence of 43 amino acids. The predicted amino-terminal sequence of pumpkin gCS was highly homologous to those of other microbody enzymes, such as 3-ketoacyl-CoA thiolase of rat and malate dehydrogenase of watermelon that are also synthesized as precursors of higher molecular mass.
    Immunoblot analysis showed that the level of gCS protein increased markedly during germination and decreased rapidly during the light-induced transition of microbodies from glyoxysomes to leaf peroxisomes. By contrast, the level of mRNA for gCS reached a maximum earlier than that of the protein and declined even in darkness. The level of the mRNA was low during the microbody transition. These results indicate that the accumulation of the gCS protein does not correspond to that of the mRNA and that degradation of gCS is induced during the microbody transition, suggesting that post-transcriptional regulation plays an important role in the microbody transition.

    Web of Science

    researchmap

  • CHARACTERIZATION OF INTRAVACUOLAR PIGMENTED STRUCTURES IN ANTHOCYANIN-CONTAINING CELLS OF SWEET-POTATO SUSPENSION-CULTURES

    M NOZUE, H KUBO, M NISHIMURA, A KATOU, C HATTORI, N USUDA, T NAGATA, H YASUDA

    PLANT AND CELL PHYSIOLOGY   34 ( 6 )   803 - 808   1993年9月

     詳細を見る

    記述言語:英語   出版者・発行元:JAPANESE SOC PLANT PHYSIOLOGISTS  

    Intravacuolar pigmented structures occurred in anthocyanin-producing cultured cells of sweet potato (Ipomoea batatas) were characterized. Formation of the pigmented structures in sweet potato cells was induced by transfer of callus cultured in 2,4-D containing agar medium into 2,4-D free liquid medium under continuous illumination. These structures were found in the vacuoles. The pigmented structures were isolated from the protoplasts by precipitation in 60% (w/w) sucrose after centrifugation. Electron microscopic observations of the anthocyanin-containing cultured cells showed these structures had neither membrane boundary nor internal structures, and were found as strongly osmiophilic globules in vacuoles. Numerous small osmiophilic globules were observed in central vacuoles at the early stage of anthocyanin accumulation, but not found in cytoplasm. Similar pigmented structures in vacuoles were also formed by treatment with neutral red. These observations indicate that these pigmented structure is the high density and insoluble globules highly concentrated with anthocyanin, which was synthesized in cytoplasm and transported to the central vacuoles.

    Web of Science

    researchmap

▶ 全件表示

Works(作品等)

  • 植物にみる環境刺激の受容から応答に至る過程の研究

    2002年

     詳細を見る

  • Joint Research of sensing and response of plants for environmental stimuli

    2002年

     詳細を見る

  • 植物ペルオキシソームに局在するsmall HSP様タンパク質の機能.

    2000年

     詳細を見る

  • シロイヌナズナによる植物B酸化系の形態形成およびストレス応答への関与

    2000年

     詳細を見る

  • Joint Research of Functions of small HSP-like proteins localized in plant peroxisomes.

    2000年

     詳細を見る

  • Joint research on participation of B-oxidation pathway on morphogenesis and stress-response of plants.

    2000年

     詳細を見る

  • ペルオキシソーム局在型低分子量熱ショックタンパク質ホモログの構造と機能

    1998年
    -
    2001年

     詳細を見る

  • Joint research on structure and functions of peroxisome-localized small HSP-like proteins.

    1998年
    -
    2001年

     詳細を見る

▶ 全件表示

共同研究・競争的資金等の研究

  • 植物におけるペルオキシソームの形成と機能発現

    1999年

      詳細を見る

    資金種別:競争的資金

    researchmap

  • Biogenesis and functions of peroxisomes in plants

    1999年

      詳細を見る

    資金種別:競争的資金

    researchmap

 

担当経験のある授業科目

  • 生物学基礎実習a

    2021年
    -
    現在
    機関名:新潟大学

  • 生物学特論 III

    2021年
    -
    現在
    機関名:新潟大学

  • 専門力アクティブ・ラーニング

    2019年
    -
    現在
    機関名:新潟大学

  • 課題研究II(生物学)

    2018年
    -
    現在
    機関名:新潟大学

  • 遺伝学

    2018年
    機関名:新潟大学

  • 理学スタディ・スキルズ

    2017年
    -
    現在
    機関名:新潟大学

  • 生物学基礎実習b

    2017年
    -
    現在
    機関名:新潟大学

  • 生物学総合演習

    2017年
    -
    現在
    機関名:新潟大学

  • 課題研究I(生物学)

    2017年
    -
    現在
    機関名:新潟大学

  • 自然科学基礎実験

    2017年
    機関名:新潟大学

  • 生物学特論II

    2017年
    機関名:新潟大学

  • 自然科学総論Ⅳ

    2017年
    機関名:新潟大学

  • 基礎植物学

    2017年
    機関名:新潟大学

  • 植物生理学実習

    2016年
    -
    2019年
    機関名:新潟大学

  • 植物生理学特論Ⅱ

    2015年
    -
    2017年
    機関名:新潟大学

  • 生物学-植物A-

    2015年
    機関名:新潟大学

  • 生物学-植物A-

    2014年
    -
    現在
    機関名:新潟大学

  • 植物機能制御論Ⅱ

    2014年
    機関名:新潟大学

  • 生物学特論Ⅴ

    2014年
    機関名:新潟大学

  • 細胞生物学II

    2012年
    -
    現在
    機関名:新潟大学

  • 課題研究I(生物学科)

    2012年
    -
    2016年
    機関名:新潟大学

  • 生命・食料科学特定研究BⅠ

    2012年
    -
    2015年
    機関名:新潟大学

  • 研究発表演習(中間発表)

    2012年
    -
    2015年
    機関名:新潟大学

  • 文献詳読Ⅰ

    2012年
    -
    2015年
    機関名:新潟大学

  • 生命・食料科学セミナーBⅠ

    2012年
    -
    2015年
    機関名:新潟大学

  • 生命・食料科学セミナーBⅡ

    2012年
    -
    2014年
    機関名:新潟大学

  • 生命・食料科学特定研究BⅡ

    2012年
    -
    2014年
    機関名:新潟大学

  • 文献詳読Ⅱ

    2012年
    -
    2014年
    機関名:新潟大学

  • 研究発表

    2012年
    機関名:新潟大学

  • 生物学特論V B

    2011年
    機関名:新潟大学

  • 生物学基礎演習

    2010年
    -
    2017年
    機関名:新潟大学

  • 科学・技術と社会

    2010年
    -
    2012年
    機関名:新潟大学

  • 日本事情自然系A

    2009年
    -
    2015年
    機関名:新潟大学

  • 基礎細胞生物学

    2008年
    -
    現在
    機関名:新潟大学

  • 植物生理学演習

    2007年
    -
    現在
    機関名:新潟大学

  • 生物学基礎A

    2007年
    -
    2019年
    機関名:新潟大学

  • 生物学実験 I

    2007年
    -
    2019年
    機関名:新潟大学

  • 生命科学への招待(生物学学習法)

    2007年
    -
    2017年
    機関名:新潟大学

  • 基礎生物科学実習I

    2007年
    -
    2017年
    機関名:新潟大学

  • 課題研究II

    2007年
    -
    2016年
    機関名:新潟大学

  • 植物形態発生学実習

    2007年
    -
    2015年
    機関名:新潟大学

  • 生物化学実習

    2007年
    -
    2015年
    機関名:新潟大学

  • オルガネラ分子生物学特論

    2007年
    -
    2013年
    機関名:新潟大学

  • 植物細胞生物学特論

    2007年
    -
    2013年
    機関名:新潟大学

  • 課題研究I

    2007年
    -
    2011年
    機関名:新潟大学

  • 植物細胞生物学

    2007年
    -
    2011年
    機関名:新潟大学

  • 植物生理学I

    2007年
    機関名:新潟大学

▶ 全件表示