Updated on 2022/12/01

写真a

 
TAKAHASHI Takeshi
 
Organization
Academic Assembly Institute of Science and Technology JOUHOU DENSHI KOUGAKU KEIRETU Associate Professor
Faculty of Engineering Department of Engineering Associate Professor
Title
Associate Professor
External link

Degree

  • 博士(理学) ( 2003.3   新潟大学 )

Research Interests

  • 代数関数体の内部構造

  • 代数幾何学

  • 代数多様体の自己同型

  • 射影超曲面の準ガロア点

  • 代数曲線の弱ガロア・ワイエルシュトラス点

  • 射影超曲面のガロア点

  • Algebraic Geometry

  • 代数幾何

Research Areas

  • Natural Science / Algebra

Research History (researchmap)

  • Yamagata University   Graduate School of Science and Engineering

    2018.7

      More details

  • Niigata University   Associate Professor

    2014.9

      More details

  • Nagaoka Institute of Design

    2014.4 - 2014.9

      More details

  • National Institute of Technology, Nagaoka College   Division of General Education   Associate Professor

    2009.4 - 2014.8

      More details

  • National Institute of Technology, Nagaoka College   Division of General Education   Lecturer

    2003.10 - 2009.3

      More details

  • Niigata University   Faculty of Engineering

    2003.4 - 2004.3

      More details

▶ display all

Research History

  • Niigata University   Faculty of Engineering Department of Engineering   Associate Professor

    2017.4

  • Niigata University   Abolition organization Mathematical Information Division   Associate Professor

    2014.9 - 2017.3

Education

  • Niigata University   Graduate School of Science and Technology   研究生

    2003.4 - 2003.9

      More details

  • Niigata University   Graduate School of Science and Technology   博士後期課程 情報理工学専攻

    2000.4 - 2003.3

      More details

    Country: Japan

    researchmap

  • Niigata University   Graduate School of Science and Technology   博士前期課程 数理科学専攻

    1998.4 - 2000.3

      More details

  • Niigata University   Faculty of Science   Department of Mathematics

    1996.4 - 1998.3

      More details

    Country: Japan

    researchmap

  • Nagaoka National College of Technology   電気工学科

    1991.4 - 1996.3

      More details

    Country: Japan

    researchmap

Professional Memberships

  • ATOMIC ENERGY SOCIETY OF JAPAN

    2019.4 - 2020.3

      More details

  • The Mathematical Society of Japan

    2003.4

      More details

 

Papers

  • Galois lines for a canonical curve of genus 4, I: Non-skew cyclic lines Reviewed

    Jiryo Komeda, Tekeshi Takahashi

    Rendiconti del Seminario Matematico della Università di Padova   , in press,   2022.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    researchmap

  • Galois lines for a canonical curve of genus 4, II: Skew cyclic lines Reviewed

    Jiryo Komeda, Takeshi Takahashi

    Rendiconti del Seminario Matematico della Università di Padova   , in press,   2022.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    researchmap

  • Perceptions of Residents in Relation to Smartphone Applications to Promote Understanding of Radiation Exposure after the Fukushima Accident: A Cross-Sectional Study within and outside Fukushima Prefecture

    Yujiro Kuroda, Jun Goto, Hiroko Yoshida, Takeshi Takahashi

    Journal of Radiation Protection and Research   47 ( 2 )   67 - 76   2022.7

     More details

    Authorship:Last author   Publishing type:Research paper (scientific journal)   Publisher:Korean Association for Radiation Protection  

    Background: We conducted a cross-sectional study of residents within and outside Fukushima Prefecture to clarify their perceptions of the need for smartphone applications (apps) for explaining exposure doses. The results will lead to more effective methods for identifying target groups for future app development by researchers and municipalities, which will promote residents’ understanding of radiological situations.Materials and Methods: In November 2019, 400 people in Fukushima Prefecture and 400 people outside were surveyed via a web-based questionnaire. In addition to basic characteristics, survey items included concerns about radiation levels and intention to use a smartphone app to keep track of exposure. The analysis was conducted by stratifying responses in each region and then cross-tabulating responses to concerns about radiation levels and intention to use an app by demographic variables. The intention to use an app was analyzed by binomial logistic regression analysis. Text-mining analyses were conducted in KH Coder software.Results and Discussion: Outside Fukushima Prefecture, concerns about the medical exposure of women to radiation exceeded 30%. Within the prefecture, the medical exposure of women, purchasing food products, and consumption of own-grown food were the main concerns. Within the prefecture, having children under the age of 18, the experience of measurement, and having experience of evacuation were significantly related to the intention to use an app.Conclusion: Regional and individual differences were evident. Since respondents differ, it is necessary to develop and promote app use in accordance with their needs and with phases of reconstruction. We expect that a suitable app will not only collect data but also connect local service providers and residents, while protecting personal information.

    DOI: 10.14407/jrpr.2021.00073

    researchmap

  • Algebraic curves admitting the same Galois closure for two projections Reviewed

    Satoru Fukasawa, Kazuki Higashine, Takeshi Takahashi

    Annali di Matematica Pura ed Applicata (1923 -)   201   2055 - 2061   2022.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Springer Science and Business Media LLC  

    DOI: 10.1007/s10231-022-01191-0

    researchmap

    Other Link: https://link.springer.com/article/10.1007/s10231-022-01191-0/fulltext.html

  • Normal log canonical del Pezzo surfaces of rank one and type (IIb) Reviewed

    Hideo Kojima, Takeshi Takahashi

    Saitama Mathematical Journal   34   47 - 72   2022.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    researchmap

  • Quasi-Galois points, I: Automorphism groups of plane curves Reviewed

    Satoru Fukasawa, Kei Miura, Takeshi Takahashi

    Tohoku Mathematical Journal   71 ( 4 )   487 - 494   2019.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    researchmap

  • Number of weak Galois-Weierstrass points with Weierstrass semigroups generated by two elements Reviewed

    Jiryo Komeda, Takeshi Takahashi

    Journal of the Korean Mathematical Society   56 ( 6 )   1463 - 1474   2019.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    researchmap

  • Log del Pezzo surfaces of rank one containing the affine plane Reviewed

    Hideo Kojima, Takeshi Takahashi

    Nihonkai Mathematical Journal   29 ( 2 )   77 - 130   2018

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    researchmap

  • RELATING GALOIS POINTS TO WEAK GALOIS WEIERSTRASS POINTS THROUGH DOUBLE COVERINGS OF CURVES Reviewed

    Jiryo Komeda, Takeshi Takahashi

    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY   54 ( 1 )   69 - 86   2017.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:KOREAN MATHEMATICAL SOC  

    The point P is an element of P-2 is referred to as a Galois point for a nonsingular plane algebraic curve C if the projection pi p : C -> P-1 from P is a Galois covering. In contrast, the point P' is an element of C' is referred to as a weak Galois Weierstrass point of a nonsingular algebraic curve C' if P' is a Weierstrass point of C' and a total ramification point of some Galois covering f : C' -> P-1. In this paper, we discuss the following phenomena. For a nonsingular plane curve C with a Galois point P and a double covering phi: C -> C' , if there exists a common ramification point of pi p and phi, then there exists a weak Galois Weierstrass point P' is an element of C' with its Weierstrass semigroup such that H(P') = < r, 2r - 1 > or < r, 2r + 1 >, which is a semigroup generated by two positive integers r and 2r + 1 or 2r - 1, such that P', is a branch point of phi. Conversely, for a weak Galois Weierstrass point P' is an element of C' with H(P') = < r, 2r 1 > or < r, 2r + 1 >, there exists a nonsingular plane curve C with a Galois point P and a double covering phi : C -> C' such that P' is a branch point of phi.

    DOI: 10.4134/JKMS.j150593

    Web of Science

    Scopus

    researchmap

  • Development of a Portable Gamma-ray Survey System for the Measurement of Air Dose Rates Reviewed

    Jun Goto, Yugo Shobugawa, Yoh Kawano, Yoshihiro Amaya, Takuji Izumikawa, Yoshinori Katsuragi, Tomohiro Shiiya, Tsubasa Suzuki, Takeshi Takahashi, Toshihiro Takahashi, Hidenori Yoshida, Makoto Naito

    Proceedings of International Symposium on Radiation Detectors and Their Uses (ISRD2016)   11   ROMBUNNO.070007 (WEB ONLY)   2016.11

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)   Publisher:Journal of the Physical Society of Japan  

    DOI: 10.7566/jpscp.11.070007

    J-GLOBAL

    researchmap

  • Projection of a nonsingular plane quintic curve and the dihedral group of order eight Reviewed

    Takeshi Takahashi

    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA   135   39 - 61   2016

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:C E D A M SPA CASA EDITR DOTT ANTONIO MILANI  

    Let C be a nonsingular plane quintic curve over the complex number field C, and let pi(P) : C -> P-1 be a projection from P is an element of C. Let L-P be the Galois closure of the field extension C(C)/C(P-1) induced by pi(P), where C(C) and C(P-1) are the rational function fields of C and P-1, respectively. We call the point P a D-4-point if the Galois group of L-P /C(P-1) is isomorphic to the dihedral group D-4 of order eight. In this paper, we prove that the number of D-4-points for C equals 0, 1, 3, 5, or 15, and show that the curve with 15 D-4-points is projectively equivalent to the Fermat quintic curve.

    DOI: 10.4171/RSMUP/135-3

    Web of Science

    Scopus

    researchmap

  • Galois points for a normal hypersurface Reviewed

    Satoru Fukasawa, Takeshi Takahashi

    Transactions of the American Mathematical Society   366 ( 3 )   1639 - 1658   2014

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    A Galois point for a hypersurface is a point from which the projection induces a Galois extension of function fields. The purpose of this article is to determine the set Δ(X) of Galois points for a hypersurface X with dim Sing(X) ≤ dim X - 2 in characteristic zero: In fact, if X is not a cone, we give a sharp upper bound for the cardinality of Δ(X) in terms of dim X and dim Sing(X), and completely classify X attaining the bound. We determine Δ(X) also when X is a cone. To achieve our purpose, we prove a certain hyperplane section theorem on a Galois point in arbitrary characteristic. The hyperplane section theorem has other important applications: For example, we can classify the Galois group induced by a Galois point in arbitrary characteristic and determine the distribution of Galois points for a Fermat hypersurface of degree pe + 1 in characteristic p &gt
    0. © 2013 American Mathematical Society.

    DOI: 10.1090/S0002-9947-2013-05875-8

    Scopus

    researchmap

  • Normal del Pezzo surfaces of rank one with log canonical singularities Reviewed

    Hideo Kojima, Takeshi Takahashi

    JOURNAL OF ALGEBRA   360   53 - 70   2012.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:ACADEMIC PRESS INC ELSEVIER SCIENCE  

    We study normal del Pezzo surfaces of rank one with only log canonical singularities. Under some additional assumptions, we classify such surfaces. Moreover, we prove that every normal del Pezzo surface of rank one with only rational log canonical singularities has at most five singular points. (c) 2012 Elsevier Inc. All rights reserved.

    DOI: 10.1016/j.jalgebra.2012.02.026

    Web of Science

    Scopus

    researchmap

  • Galois morphism computing the gonality of a nonsingular projective curve on a Hirzebruch surface Reviewed

    Takeshi Takahashi

    JOURNAL OF PURE AND APPLIED ALGEBRA   216 ( 1 )   12 - 19   2012.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:ELSEVIER SCIENCE BV  

    Let Pi : X(e) -> P(1) (e >= 0) be the rational ruled complex surface defined by O(P1) circle plus O(P1) (-e) on P(1), i.e., the eth Hirzebruch surface. Let C be a nonsingular projective curve on X(e), and pi : C -> P(1) the restriction of Pi to C. We assume that C is not rational nor elliptic nor hyperelliptic. Then, we consider the question: when is the function field extension C(C)/C(P(1)) induced by pi Galois? We determine the defining equation of C and the Galois group when the function field extension is Galois. We also prove the following theorem: if C is not isomorphic to a nonsingular plane curve, then every automorphism of C can be extended to an automorphism of X(e). (C) 2011 Elsevier B.V. All rights reserved.

    DOI: 10.1016/j.jpaa.2011.04.020

    Web of Science

    Scopus

    researchmap

  • Automorphisms of a nonsingular curve on a rational surface of picard number three Reviewed

    Kei Miura, Akira Ohbuchi, Takeshi Takahashi

    Far East Journal of Mathematical Sciences   47   109 - 119   2010.12

     More details

    Language:English  

    Let S be a complex projective surface obtained from a Hirzebruch surface by one monoidal transformation, and C be a nonsingular curve on S. We prove that if the nonsingular pair (S, C) is relatively minimal, then every automorphism of C can be extended to an automorphism of S. © 2010 Pushpa Publishing House.

    Scopus

    researchmap

  • Notes on minimal compactifications of the affine plane Reviewed

    Hideo Kojima, Takeshi Takahashi

    ANNALI DI MATEMATICA PURA ED APPLICATA   188 ( 1 )   153 - 169   2009.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:SPRINGER HEIDELBERG  

    In this paper, we consider the minimal compactifications X of the complex affine plane with at most log canonical singular points. We classify the surfaces X in the case X has at least one non-log terminal singular point.

    DOI: 10.1007/s10231-008-0069-2

    Web of Science

    Scopus

    researchmap

  • Reducible curves on rational surfaces Reviewed

    Hideo Kojima, Takeshi Takahashi

    Tokyo Journal of Mathematics   29 ( 2 )   301 - 317   2006

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.3836/tjm/1170348169

    Scopus

    researchmap

  • Non-smooth Galois point on a quintic curve with one singular point Reviewed

    Takahashi Takeshi

    Nihonkai mathematical journal   16 ( 1 )   57 - 66   2005.6

     More details

    Language:English   Publisher:新潟大学  

    CiNii Article

    CiNii Books

    researchmap

  • Galois points on normal quartic surfaces Reviewed

    T Takahashi

    OSAKA JOURNAL OF MATHEMATICS   39 ( 3 )   647 - 663   2002.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:OSAKA JOURNAL OF MATHEMATICS  

    Web of Science

    Scopus

    researchmap

  • Minimal splitting surface determined by a projection of a smooth quartic surface Reviewed

    T Takahashi

    ALGEBRA COLLOQUIUM   9 ( 1 )   107 - 115   2002.3

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:SPRINGER-VERLAG  

    Let S be a smooth quartic hypersurface in the projective three space and consider a projection of S from P is an element of S to a hyperplane H. This projection induces an extension of fields k(S)/k(H). Let L-P be the Galois closure and X a smooth model of L-P. We show that X is a surface of general type if the extension is not Galois.

    Web of Science

    Scopus

    researchmap

  • The group generated by automorphisms belonging to Galois points of the quartic surface Reviewed

    Kanazawa Mitsunori, Takahashi Takeshi, Yoshihara Hisao

    Nihonkai Mathematical Journal   12 ( 1 )   89 - 99   2001

     More details

    Language:English   Publisher:新潟大学  

    We consider the group G generated by automorphisms belonging to Galois points of S_8, which is the quartic surface with the maximal number of Galois points. We obtain several exact sequences of groups, from which we see that the order of G is 2^53^2. Moreover, we show that S_8 has a structure of C_4-fiber space, where C_4 is the quartic curve with the maximal number of Galois points.

    CiNii Article

    researchmap

▶ display all

Books

  • BISHAMONの軌跡II (福島支援5年間の記録)

    内藤 眞, 青木萩子, 野中昌法

    新潟日報事業社  2016.10  ( ISBN:4861326400

     More details

    Total pages:402  

    ASIN

    researchmap

  • 微分積分 (ドリルと演習シリーズ)

    日本数学教育学会高専大学部会教材研究グループTAMS

    電気書院  2010.2  ( ISBN:4485302024

     More details

    Total pages:208  

    ASIN

    researchmap

  • 線形代数 (ドリルと演習シリーズ)

    日本数学教育学会高専, 大学部会教材研究グ

    電気書院  2010.2  ( ISBN:4485302032

     More details

    Total pages:183  

    ASIN

    researchmap

MISC

  • 被ばく理解のための、個人被ばく線量を簡易推定してそのデータを管理するアプリの 開発、および得られたデータの分析とその結果の公表

    主任研究者, 高橋剛

    環境省 平成31年放射線健康管理・健康不安対策事業(放射線の健康影響に係る研究調査事業)報告書, テーマ(3) リスクコミュニケーション及び情報発信に関する研究   2020.12

     More details

    Authorship:Lead author   Language:Japanese  

    researchmap

  • 種数4の代数曲線のガロア直線について

    高橋剛

    第17回代数曲線論シンポジウム報告集, 於神奈川工科大学アクティブラーニング横浜(2019年12月14日〜12月15日)   39 - 48   2020.3

     More details

    Authorship:Lead author, Last author, Corresponding author  

    researchmap

  • ワイエルシュトラス半群が<a,b>となる弱ガロア・ワイエルシュトラス点 Invited

    高橋 剛

    射影多様体の幾何とその周辺 2018 報告集   13 - 25   2019.2

     More details

    Language:Japanese  

    researchmap

  • 自動車走行サーベイシステムASURAを用いた道路上の放射性セシウム沈着量調査

    後藤淳, 高橋剛, 遠藤良, 天谷吉宏, 菖蒲川由郷, 吉田秀義, 内藤眞

    日本原子力学会春の年会予稿集(CD-ROM)   2017   ROMBUNNO.2B19   2017.3

     More details

    Language:Japanese  

    J-GLOBAL

    researchmap

  • Galois Weierstrass points whose Weierstrass semigroups are generated by two elements

    Jiryo Komeda, Takeshi Takahashi

    2017.3

     More details

    Publishing type:Internal/External technical report, pre-print, etc.  

    We investigate the number of Galois Weierstrass points whose Weierstrass<br />
    semigroups are generated by two positive integers.

    arXiv

    researchmap

  • 平面代数曲線の準ガロワ点について

    高橋 剛

    射影多様体の幾何とその周辺2015 報告集, 於高知大学   45 - 58   2016

     More details

  • Quasi-Galois points

    Satoru Fukasawa, Kei Miura, Takeshi Takahashi

    2015.5

     More details

    Publishing type:Internal/External technical report, pre-print, etc.  

    We introduce the new notion of the &quot;quasi-Galois point&quot; in Algebraic<br />
    geometry, which is a generalization of the Galois point. A point $P$ in<br />
    projective plane is said to be quasi-Galois for a plane curve if the curve<br />
    admits a non-trivial birational transformation which preserves the fibers of<br />
    the projection $\pi_P$ from $P$. We discuss the standard form of the defining<br />
    equation of curves with quasi-Galois points, the number of quasi-Galois points,<br />
    the structure of the Galois group for the projection, relations with dual<br />
    curves, and so on. Our theory also has applications to the study of<br />
    automorphism groups of algebraic curves.

    arXiv

    researchmap

  • ガロワ点とガロワワイエルシュトラス点について

    高橋 剛

    代数幾何シンポジウム 2014 in 岐阜 報告集, http://www.tsuyama-ct.ac.jp/matsuda/AlgeGeo/algebraic_geometry_2014.pdf   101 - 112   2015.3

     More details

  • ガロワ点とガロワワイエルシュトラス点について (第12回代数曲線論シンポジウム)

    高橋 剛

    第12回代数曲線論シンポジウム 於日本大学 報告集   43 - 49   2015

     More details

  • 非特異5次曲線の二面体群に関する点射影

    高橋 剛

    代数幾何シンポジウム2013 in 岐阜 報告集, 高専代数幾何学研究会編   31 - 40   2013

     More details

  • 重み付き射影空間 P(1,2,3) 内の非特異代数曲線のゴナリティと自己同型射について

    高橋 剛

    代数曲線論シンポジウム 於首都大学東京南大沢キャンパス 報告集   61 - 64   2012

     More details

  • 平面代数曲線のガロア点 -特異点が2個のとき, その2-

    高橋 剛

    数幾何目白セミナー2010, 学習院大学理学部数学科研究室編   119 - 126   2011

     More details

  • 平面代数曲線のガロア点 -特異点が2個のとき-

    高橋 剛

    代数曲線論シンポジウム 於横浜ランドマーク・タワー18階横浜国立大学サテライトキャンパス 記録   39 - 48   2009

     More details

  • ヒルゼブルフ曲面内の非特異代数曲線 -ルーリングによる射はいつガロアになるのか-

    高橋 剛

    射影多様体の幾何とその周辺~2008 報告集, 於高知大学   89 - 100   2009

     More details

  • GALOIS TRISECANT LINE FOR A COMPLETE INTERSECTION CURVE OF TWO CUBIC SURFACES (Local invariants of families of algebraic curves)

    Takahashi Takeshi

    RIMS Kokyuroku   1345   156 - 165   2003.11

     More details

    Language:Japanese   Publisher:京都大学  

    CiNii Article

    CiNii Books

    researchmap

  • クリフォード次元3の代数曲線のガロアトリセカントラインについて

    高橋 剛

    代数曲線論シンポジウム 於神奈川大学工学部 記録   19 - 29   2003

     More details

  • The group generated by automorphisms belonging to Galois points of the quartic surface (jointly worked)

    Kanazawa Mitsunori, Takahashi Takeshi, Yoshihara Hisao

    Nihonkai Mathematical Journal   12 ( 1 )   89 - 99   2001

     More details

    Language:English  

    CiNii Article

    researchmap

▶ display all

Presentations

  • 種数4の標準曲線に対する skew cyclic line の本数

    高橋剛

    新潟代数セミナー  2022.6 

     More details

    Presentation type:Oral presentation (general)  

    researchmap

  • Galois lines for a space curve of genus 4 Invited

    TAKAHASHI Takeshi

    17th Symposium on Algebraic curves  2019.12 

     More details

  • 種数4曲線のガロアラインについて, その2

    高橋 剛

    Workshop on Galois point and related topics, 山形大学理学部  2019.9 

     More details

  • 福島における放射性物質分布調査 (3)自動車走行サーベイシステムASURAを用いた国道6号線における高位置分解能調査

    後藤 淳, 高橋 剛, 千石 周, 近藤 達也, 吉田 秀義

    日本原子力学会2019年秋の大会  2019.9 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    researchmap

  • Development of an application for rough estimation of individual doses Purpose, Plan and What we did in the first six months

    Takeshi Takahashi, Jun Goto, Tatsuya Kondo, Masahiro Sugawa, Naoki Kano, Hiroko Yoshida, Ken Ohno, Yusuke Oribe, Hidenori Yoshida

    2019.9 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    researchmap

  • 屋内環境における放射線量率マップの作成

    千石 周, 高橋 剛, 後藤 淳

    第56回 アイソトープ・放射線研究発表会  2019.7  日本アイソトープ協会

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:東京大学弥生講堂  

    researchmap

  • 指向性がある自動車走行サーベイシステムASURAの開発と測定例の紹介

    後藤淳, 高橋剛, 千石周, 遠藤史, 近藤達也, 吉田秀義

    第6回「原発事故被災地域における放射線量マッピングシステムの技術開発・運用とデータ解析に関する研究会」および第390回生存圏シンポジウム「第8回東日本大震災以降の福島県の現状及び支援の取り組みについて」  2018.12 

     More details

  • Weak Galois-Weierstrass points with semigroups generated by two integers Invited

    TAKAHASHI Takeshi

    2018.10 

     More details

  • 種数4曲線のガロアラインについて

    高橋 剛

    Workshop on Galois point and related topics, 新潟大学駅南キャンパスときめいと  2018.9 

     More details

  • 福島における放射性物質の分布状況調査 (3)自動車走行サーベイシステムASURAによる道路表面の放射性セシウム沈着量の経時変化

    後藤淳, 高橋剛, 千石周, 吉田秀義, 近藤達也

    日本原子力学会2018年秋の大会、岡山大学津島キャンパス  2018.9 

     More details

    Presentation type:Oral presentation (general)  

    researchmap

  • 自動車走行サーベイシステムASURAを用いた国道6号線調査について

    後藤淳, 高橋剛, 千石周, 吉田秀義

    環境放射能除染学会 第7回研究発表会、タワーホール船堀  2018.7 

     More details

    Presentation type:Oral presentation (general)  

    researchmap

  • 常磐自動車道における放射線の分布状況調査 (4)ASURAを用いた道路上の放射性セシウム沈着量調査

    後藤淳, 高橋剛, 遠藤良, 福島優希, 吉田秀義

    日本原子力学会2018年春の年会、大阪大学吹田キャンパス  2018.3 

     More details

  • Number of weak Galois Weierstrass points with semigroup <a, b> Invited

    高橋 剛

    The 16th Affine Algebraic Geometry Meeting, 関西学院大学大阪梅田キャンパス  2018.3 

     More details

  • ASURAを用いた最近の調査の紹介

    後藤淳, 高橋剛, 遠藤良, 福島優希, 吉田秀義, 西方真弓, 菖蒲川由郷, 内藤眞

    第5回原発事故被災地域における放射線量マッピングシステムの技術開発・運用とデータ解析に関する研究会、京都大学原子炉実験所  2018.2 

     More details

  • Weak Galois Weierstrass points whose semigroups are generated by two integers Invited International conference

    TAKAHASHI Takeshi

    2017.9 

     More details

    Language:English  

    researchmap

  • ワイエルシュトラス半群が2元生成となる弱ガロアワイエルシュトラス点の個数について

    高橋 剛

    10th Workshop on Galois point and related topics, KKR蔵王白銀荘 会議室  2017.7 

     More details

  • 平面代数曲線のガロア点と準ガロア点

    高橋 剛

    新潟代数セミナー, 新潟大学理学部  2017.5 

     More details

  • 自動車走行サーベイシステムASURAを用いた道路上の放射性セシウム沈着量調査

    後藤淳, 高橋剛, 遠藤良, 天谷吉宏, 菖蒲川由郷, 吉田秀義, 内藤眞

    日本原子力学会2017年春の年会、東海大学湘南キャンパス  2017.3 

     More details

  • On the number of Galois Weierstraß points whose semigroups are generated by two elements Invited International conference

    高橋 剛

    he 15th Affine Algebraic Geometry Meeting, 関西学院大学大阪梅田キャンパス  2017.3 

     More details

    Language:English  

    researchmap

  • 自動車走行サービスASURAによるホットスポットの位置推定

    遠藤良, 高橋剛, 上林智徳, 後藤淳, 内藤眞

    第4回原発事故被災地域における放射線量マッピングシステムの技術開発・運用とデータ解析に関する研究会、京都大学原子炉実験所  2017.1 

     More details

  • ASURAを用いた放射性セシウム沈着量調査

    後藤淳, 高橋剛, 遠藤良, 天谷吉宏, 菖蒲川由郷, 吉田秀義, 内藤眞

    第4回原発事故被災地域における放射線量マッピングシステムの技術開発・運用とデータ解析に関する研究会、京都大学原子炉実験所  2017.1 

     More details

  • ガロア点、準ガロア点、弱ガロア・ワイエルシュトラス点 Invited

    高橋 剛

    第8回多項式環論セミナー, 静岡大学教育学部  2016.8 

     More details

  • Quasi-Galois points for a plane algebraic curve Invited International conference

    高橋 剛

    第14回アフィン代数幾何学研究集会, 関西学院大学大阪梅田キャンパス  2016.3 

     More details

    Language:English  

    researchmap

  • Development of a Portable Gamma-ray Survey System for the Measurement of Dose Rates in Air

    Goto J, Shobugawa Y, Kawano Y, Amaya Y, Izumikawa T, Katsuragi Y, Shiiya T, Suzuki T, Takahashi TA, Takahashi TO, Yoshida H, Naito M

    International Symposium on Radiation Detectors and Their Uses (ISRD2016)  2016.1  Organized by High Energy Accelerator Research Organization(KEK), JSPS 186th Committee on Radiation Science and Its Applications

     More details

  • 指向性があるガンマ線自動車走行サーベイシステムASURA1号の測定結果

    後藤淳, 天谷吉宏, 泉川卓司, 遠藤良, 椎谷友博, 菖蒲川由郷, 高橋剛, 吉田秀義, 内藤眞

    第3回原発事故被災地域における放射線量マッピングシステムの 技術開発・運用とデータ解析に関する研究会第3回原発事故被災地域における放射線量マッピングシステムの 技術開発・運用とデータ解析に関する研究会, 京都大学東京オフィス  2015.11 

     More details

  • 指向性があるガンマ線自動車走行サーベイシステムASURA1号のシミュレーション

    遠藤良, 後藤淳, 天谷吉宏, 泉川卓司, 椎谷友博, 菖蒲川由郷, 高橋剛, 吉田秀義, 内藤眞

    第3回原発事故被災地域における放射線量マッピングシステムの 技術開発・運用とデータ解析に関する研究会, 京都大学東京オフィス  2015.11 

     More details

  • 平面代数曲線の準ガロワ点について Invited

    高橋 剛

    射影多様体の幾何とその周辺, 高知大学朝倉キャンパス  2015.11 

     More details

  • 指向性があるガンマ線自動車走行サーベイシステムの開発状況

    後藤淳, 天谷吉宏, 泉川卓司, 遠藤良, 椎谷友博, 菖蒲川由郷, 高橋剛, 吉田秀義, 内藤眞

    日本原子力学会2015年秋の年会, 静岡大学静岡キャンパス  2015.9 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    researchmap

  • 準ガロワ点と応用,その1

    高橋 剛

    Workshop on Galois point and related topics, 神奈川大学横浜キャンパス  2015.9 

     More details

  • 指向性があるガンマ線自動車走行サーベイシステムの開発と測定例

    後藤淳, 天谷吉宏, 泉川卓司, 遠藤良, 椎谷友博, 菖蒲川由郷, 高橋剛, 吉田秀義, 内藤眞

    環境放射能除染学会第4回研究発表会, タワーホール船堀  2015.7 

     More details

  • Galois points, Galois Weierstrass points and double coverings of curves Invited

    高橋 剛

    第9回代数曲面ワークショップ at 秋葉原, 首都大学東京秋葉原サテライトキャンパス  2015.5 

     More details

  • Projection of a nonsigular plane quintic curve and the dihedral group of order eight Invited International conference

    高橋 剛

    第13回アフィン代数幾何学研究集会, 関西学院大学大阪梅田キャンパス  2015.3 

     More details

    Language:English  

    researchmap

  • ガロワ点とガロワワイエルシュトラス点 Invited

    高橋 剛

    第2回代数幾何学研究集会--宇部--, 宇部工業高等専門学校  2015.1 

     More details

  • Galois Points and Galois Weierstrass Points Invited

    高橋 剛

    第12回代数曲線論シンポジウム, 日本大学理工学部駿河台校舎  2014.12 

     More details

  • ガロワ点と2重被覆とガロワワイエルシュトラス点

    高橋 剛

    Workshop on Galois point and related topics, 滋賀大学大津サテライトプラザ, 2014年9月13日  2014.9 

     More details

  • 非特異平面5次曲線の D4-pointの個数について

    高橋 剛

    代数幾何学小研究集会 ---新潟---, 新潟大学駅南キャンパスときめいと  2013.12 

     More details

  • Galois points for a plane algebraic curve, and related topics Invited

    高橋 剛

    Kobe Studio Seminar for Mathematics, 神戸大学大学院人間発達環境学研究科  2013.11 

     More details

  • 非特異平面5次曲線の二面体群に関係する点射影について

    高橋 剛

    Workshop on Galois point and related topics, 山形大学  2013.9 

     More details

  • 非特異平面5次曲線の二面体群に関係する点射影 Invited

    高橋 剛

    代数幾何シンポジウム2013 in 岐阜 --- 数学教育の話題もあります.---, ソフトピアジャパンセンタービル, 2013年8月9日  2013.8 

     More details

  • 2次元超曲面の非有理次数とガロワ被覆 Invited

    高橋 剛

    代数幾何目白セミナー2012, 学習院大学  2012.12 

     More details

  • 2次元射影超曲面の非有理次数に関係するガロワ被覆について

    高橋 剛

    Workshop on Galois point and related topics, 山形大学, 2012年9月15日  2012.9 

     More details

  • Automorphisms of a nonsingular curve on the weighted projective surface P(1,2,3) Invited

    高橋 剛

    第9回代数曲線論シンポジウム, 首都大学東京  2011.12 

     More details

  • 重み(1,2,3)の重み付き射影空間と, その中の非特異代数曲線の自己同型 Invited

    高橋 剛

    津山代数幾何シンポジウム2011 ―数学教育関連発表もあります. ―, 津山工業高等専門学校, 2011年7月28日  2011.7 

     More details

  • Galois point for a plane curve with two singular points Invited International conference

    高橋 剛

    代数幾何学シンポジウム ---佐渡---, 佐渡島開発総合センター  2011.6 

     More details

    Language:English  

    researchmap

  • ヒルゼブルフ曲面とその上の代数曲線の自己同型について Invited

    高橋 剛

    津山シンポジウム -代数幾何-, 津山工業高等専門学校, 2010年8月5日  2010.8 

     More details

  • Galois points for a normal hypersurface II Invited

    高橋 剛

    Workshop on Galois point and related topics, 神奈川大学富士見高原研修所  2010.6 

     More details

  • Galois points for a plane curve with two singular points Invited

    高橋 剛

    代数曲線論シンポジウム, 横浜ランドマーク・タワー18階横浜国立大学サテライトキャンパス  2009.12 

     More details

  • Automorphisms of a curve on a Hirzebruch surface Invited International conference

    高橋 剛

    アフィン代数幾何学研究集会, 関西学院大学大阪梅田キャンパス  2009.9 

     More details

    Language:English  

    researchmap

  • Curves on a Hirzebruch surface with a Galois morphism which computes the gonality Invited

    高橋 剛

    射影多様体の幾何とその周辺2008, 高知大学  2008.11 

     More details

  • アフィン平面の極小コンパクト化―対数的標準特異点を持つ場合 Invited

    高橋 剛

    アフィン代数幾何学研究集会, 関西学院大学大阪梅田キャンパス  2008.9 

     More details

  • A curve on a Hirzebruch surface with a Galois covering whose degree is equal to its gonality Invited

    高橋 剛

    Workshop on Galois point and related topics, 神奈川大学富士見高原研修所  2008.6 

     More details

  • ヒルゼブルフ曲面上の代数曲線のガロア射について Invited

    高橋 剛

    新潟大学代数幾何セミナー, 新潟大学  2005.7 

     More details

  • Galois trisecant line for an algebraic curve of Clifford dimension three Invited

    高橋 剛

    代数曲線論シンポジウム, 神奈川大学  2003.12 

     More details

  • クリフォード次元3の代数曲線のガロアトリセカントラインについて Invited

    高橋 剛

    代数曲線束の局所不変量の研究, 京都大学数理解析研究所  2003.6 

     More details

  • Non-smooth Galois point on a quintic curve with one singular point Invited

    高橋 剛

    新潟大学代数幾何セミナー, 新潟大学  2003.4 

     More details

  • Minimal splitting surface determined by a projection of a smooth quartic surface

    高橋 剛

    日本数学会 年会 代数学分科会, 東京大学  2003.3 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    researchmap

  • Galois points on normal surfaces in $\mathbb{P}^3$ Invited

    高橋 剛

    射影多様体の幾何とその周辺, 高知大学  2003.1 

     More details

  • 正規5次曲面のガロア点 Invited

    高橋 剛

    埼玉大学代数幾何講演会 2002, 埼玉大学  2002.9 

     More details

  • Non-smooth Galois point on a quintic curves with one singular point

    高橋 剛

    日本数学会 年会 代数学分科会, 明治大学  2002.3 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    researchmap

  • Smooth Galois points on normal surfaces in $\mathbb{P}^3$ Invited

    高橋 剛

    代数幾何小研究会 新潟 2001, 新潟大学  2001.11 

     More details

  • Galois points on normal quartic surfaces Invited

    高橋 剛

    新潟大学代数幾何セミナー, 新潟大学  2001.2 

     More details

  • $4$次曲面の射影とその関数体の拡大のガロワ閉包のモデルについて Invited

    高橋 剛

    新潟大学代数幾何セミナー, 新潟大学  2000.7 

     More details

▶ display all

Awards

  • 第1回福島復興支援会内藤賞

    福島復興支援会  

    高橋剛研究室

     More details

Research Projects

  • Study on internal structures of algebraic function fields - with a perspective of Galois point theory

    Grant number:19K03441  2019.4 - 2023.3

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (C)  Grant-in-Aid for Scientific Research (C)

      More details

    Grant amount:\4420000 ( Direct Cost: \3400000 、 Indirect Cost:\1020000 )

    researchmap

  • 被ばく理解のための、個人被ばく線量を簡易推定してそのデータを管理するアプリの開発、および得られたデータの分析とその結果の公表

    2019.4 - 2020.3

    環境省  平成31年度 放射線健康管理・健康不安対策事業(放射線の健康影響に係る研究調査事業) 

    高橋 剛

      More details

    Authorship:Principal investigator  Grant type:Competitive

    researchmap

  • 原発事故被災地における除染後の復興と情報発信について

    2017.9 - 2018.3

    (一財)佐々木環境技術振興財団  試験研究費・情報系 

    高橋 剛

      More details

    Authorship:Principal investigator  Grant type:Competitive

    researchmap

  • 福島県原発事故被災地の現状調査と必要とされる情報技術の開発

    2017.6 - 2018.3

    (公財)内田エネルギー科学振興財団  試験研究費・環境系 

    高橋 剛

      More details

    Authorship:Principal investigator  Grant type:Competitive

    researchmap

  • 福島復興支援会第1回内藤賞の副賞

    2017.4 - 2018.3

    福島復興支援会(代表:内藤眞)  寄附金 

    高橋 剛

      More details

    Authorship:Principal investigator  Grant type:Competitive

    researchmap

  • Development of Quasi-Galois Point Theory - To understand delicate properties of hypersurfaces

    Grant number:16K05094  2016.10 - 2020.3

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (C)  Grant-in-Aid for Scientific Research (C)

    Takahashi Takeshi

      More details

    Grant amount:\4680000 ( Direct Cost: \3600000 、 Indirect Cost:\1080000 )

    Galois points for projective hypersurfaces were studied as a object for considering the internal structure of algebraic function fields. We want a new theory that is an extension of the Galois point theory, and study "quasi-Galois points of hypersurfaces" and "weak Galois-Weierstrass points of algebraic curves" as objects of consideration.
    By a joint research with Kei Miura and Satoru Fukasawa, we study the numbers and distributions of quasi-Galois points on nonsingular plane algebraic curves. In particular, we simplified the proofs obtained before and made the results better.
    By a joint research with Jiryo Komeda, we determined the numbers and distributions of weak Galois-Weierstrass points of complete algebraic curves under the condition that the semigroup of the target points is generated by two integers.

    researchmap

  • Study on function fields of algebraic hypersurfaces focusing on projections, - for an evolution of Galois point theory -

    Grant number:25400059  2013.4 - 2016.3

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (C)  Grant-in-Aid for Scientific Research (C)

    Takahashi Takeshi, YOSHIHARA Hisao, OHBUCHI Akira, MIURA Kei

      More details

    Grant amount:\4940000 ( Direct Cost: \3800000 、 Indirect Cost:\1140000 )

    The purpose of my work is to develop a new method for the study on function fields of projective hypersurfaces as a generalization of Galois point theory. A point is called a Galois point if the projection from the point induces a Galois extension of function fields. It was defined by Prof Yoshihara (Niigata Univ.) in 1996.
    By the joint work with Prof. Miura (National Institute of Technology, Ube College) and Prof. Fukasawa (Yamagata Univ.), we defined the new notion "quasi-Galois point", which is a generalization of "Galois point", and have studied its fundamental properties. By the joint work with Prof. Komeda (Kanagawa Institute of Technology), we define the new notion "weak Galois Weierstrass point" and study the relations between these and Galois points.

    researchmap

  • 長岡高専数学談話会

    2012.4 - 2013.3

    長岡工業高等専門学校(校内公募)  長岡工業高等専門学校重点施策経費 (校長裁量経費) 

    高橋剛, 田原喜宏

      More details

    Authorship:Principal investigator  Grant type:Competitive

    researchmap

  • 長岡高専数学談話会

    2011.4 - 2012.3

    長岡工業高等専門学校(校内公募)  長岡工業高等専門学校重点施策経費 (校長裁量経費) 

    高橋剛, 田原喜宏

      More details

    Authorship:Principal investigator  Grant type:Competitive

    researchmap

  • 奨学寄附金

    2004.5

    リュウド株式会社 

    高橋 剛

      More details

    Authorship:Principal investigator  Grant type:Competitive

    researchmap

▶ display all

Other research activities

  • 研究集会世話人

    2021.3

     More details

    代数幾何ミニワークショップ「ガロア点, 有限体, 代数曲線」
    日時:2021年 3月17日(水)13:00-17:30
    場所:Zoom による開催
    世話人:深澤 知, 高橋 剛

    researchmap

  • 研究集会世話人

    2019.9

     More details

    Workshop on Galois point and related topics, 山形大学理学部, 2019年9月23日〜9月24日, 世話人: 三浦敬(宇部高専), 高橋剛(新潟大学), 深澤知(山形大学)

    researchmap

  • 研究集会世話人

    2018.9

     More details

    Workshop on Galois point and related topics, 新潟大学駅南キャンパスときめいと, 2018年9月8日~9月9日, 世話人: 三浦敬 (宇部高専) , 高橋剛 (新潟大学), 深澤知 (山形大学)

    researchmap

  • 研究集会世話人

    2017.7

     More details

    10th Workshop on Galois point and related topics, KKR蔵王白銀荘 会議室, 2017年7月15日~7月17日, 世話人: 三浦敬 (宇部高専) , \underline{高橋剛 (新潟大学) }, 深澤知 (山形大学)

    researchmap

  • 研究集会世話人

    2016.11

     More details

    研究集会「代数曲線・曲面とその周辺」, 大阪大学理学部, 2016年11月26日, 世話人: 春井岳(高知工科大学), 三浦敬(宇部高専), 高橋剛 (新潟大学)

    researchmap

  • 研究集会世話人

    2016.6

     More details

    Workshop on Galois point and related topics, 新潟大学駅南キャンパスときめいと, 2016年6月3日~6月4日, 世話人: 三浦敬 (宇部高専) , 高橋剛 (新潟大学), 深澤知 (山形大学)

    researchmap

  • 研究集会世話人

    2015.9

     More details

    Workshop on Galois point and related topics, 神奈川大学横浜キャンパス, 2015年9月5日~9月6日, 世話人: 三浦敬 (宇部高専) , 高橋剛 (新潟大学), 深澤知 (山形大学), 本間正明(神奈川大学)

    researchmap

  • 講演会世話人

    2015.7

     More details

    新潟代数セミナー
    http://mathweb.sc.niigata-u.ac.jp/~hoshi/NiigataAlgebraSeminar-j.html

    researchmap

  • 研究集会世話人

    2015.6

     More details

    代数小研究集会 in 新潟, 新潟大学, 2015年6月6日〜6月7日, 世話人: 北川真也 (岐阜高専), 三浦敬 (宇部高専), 林田秀一 (上越教育大), 高橋剛 (新潟大学)

    researchmap

  • 校閲

    2014.11

     More details

    タイトル:新 応用数学
    著者:佐藤 志保 濱口 直樹 西垣 誠一 高遠 節夫 前田 善文 向山 一男
    出版社: 大日本図書 (2014/11/1)
    単行本: 205ページ
    ISBN-10: 4477027168
    ISBN-13: 978-4477027166
    発売日: 2014/11/1

    researchmap

  • 研究集会世話人

    2014.9

     More details

    Workshop on Galois point and related topics, 滋賀大学大津サテライトプラザ, 2014年9月13日〜9月15日, 世話人: 三浦敬(宇部高専), 高橋剛(新潟大学), 長谷川武博(滋賀大学), 深澤知(山形大学)

    researchmap

  • 研究集会世話人

    2013.11

     More details

    代数幾何学小研究集会 -新潟-, 新潟大学駅南キャンパスときめいと, 2013年 11月30日~12月1日, 世話人: 小島秀雄(新潟大学), 三浦敬(宇部高専), 高橋剛(長岡高専)

    researchmap

  • 研究集会世話人

    2013.9

     More details

    Workshop on Galois point and related topics, 山形大学, 2013年9月14日~9月15日, 世話人: 三浦敬 (宇部高専) , 高橋剛 (長岡高専), 深澤知 (山形大学)

    researchmap

  • 研究集会世話人

    2012.9

     More details

    Workshop on Galois point and related topics, 山形大学, 2012年9月15日~9月16日, 世話人: 三浦敬 (宇部高専) , 高橋剛 (長岡高専), 深澤知 (山形大学)

    researchmap

▶ display all

 

Teaching Experience (researchmap)

▶ display all

Teaching Experience

  • 応用代数幾何学

    2021
    Institution name:新潟大学

  • 基礎数理B

    2017
    Institution name:新潟大学

  • 応用数理B

    2016
    Institution name:新潟大学

  • 応用代数幾何学

    2016
    -
    2017
    Institution name:新潟大学

  • 基礎数理A I

    2015
    Institution name:新潟大学

  • 構造数理

    2015
    -
    2017
    Institution name:新潟大学

  • 応用代数学特論

    2014
    Institution name:新潟大学

  • 基礎数理A II

    2014
    Institution name:新潟大学

  • アフィン代数幾何学

    2014
    Institution name:新潟大学

▶ display all

 

Social Activities

  • オイラーの多面体定理

    Role(s): Lecturer

    南相馬市教育委員会  第4回高等教育機関連携事業  南相馬市立小高中学校2年生  2019.12

     More details

    Audience: Junior students

    researchmap

  • 確率について

    Role(s): Lecturer

    南相馬市教育委員会  第4回高等教育機関連携事業  南相馬市立小高中学校3年生  2019.12

     More details

    Audience: Junior students

    researchmap

  • 長岡ジュニアラグビースクールコーチ

    2012.4 - 2015.3

     More details

  • 長岡市市民大学講座 「もう一度数学をまなびませんか?」 第5回「方程式の解の公式」

    Role(s): Lecturer

    長岡市教育委員会  2010.11

     More details

  • 長岡市ラグビーフットボール協会監事

    2008.4 - 2015.3

     More details

  • 新潟県ラグビーフットボール協会理事

    2005.4 - 2012.3

     More details

▶ display all