Updated on 2024/04/26

写真a

 
KAKIHANA Taichi
 
Organization
Academic Assembly Institute of Medicine and Dentistry IGAKU KEIRETU Assistant Professor
Graduate School of Medical and Dental Sciences Community Disease Control Infectious Disease Control and International Medicine Assistant Professor
Title
Assistant Professor
External link

Degree

  • 理学 ( 2014.3   京都大学 )

Research Areas

  • Life Science / Virology

  • Life Science / Structural biochemistry  / オートファジー

  • Life Science / Cell biology  / 小胞体

  • Life Science / Pathophysiologic neuroscience  / Stress granules

Research History (researchmap)

  • Niigata University   Graduate School of Medical and Dental Sciences   Assistant Professor

    2017.7

      More details

  • 大阪大学大学院   医学系研究科   特任研究員

    2014 - 2017

      More details

  • 京都大学大学院   理学研究科生物学専攻   日本学術振興会特別研究員(DC2)

    2012 - 2014

      More details

  • Università Vita Salute San Raffaele   Visiting fellow

    2009.4 - 2009.7

      More details

    Country:Italy

    researchmap

Research History

  • Niigata University   Graduate School of Medical and Dental Sciences Community Disease Control Infectious Disease Control and International Medicine   Assistant Professor

    2017.7

Education

  • 京都大学大学院   理学研究科   生物科学専攻博士課程

    2011 - 2014

      More details

  • 京都大学大学院   理学研究科   生物科学専攻修士課程

    2009 - 2011

      More details

  • Kyoto University   Faculty of Science   Faculty of Science

    2005 - 2009

      More details

Professional Memberships

 

Papers

  • Genetic engineering employing MPB70 and its promoter enables efficient secretion and expression of foreign antigen in bacillus Calmette Guérin (BCG) Tokyo

    Atsuki Takeishi, Amina K. Shaban, Taichi Kakihana, Hayato Takihara, Shujiro Okuda, Hidekazu Osada, Desak Nyoman Surya Suameitria Dewi, Yuriko Ozeki, Yutaka Yoshida, Akihito Nishiyama, Yoshitaka Tateishi, Yuki Aizu, Yasushi Chuma, Kazuyo Onishi, Daisuke Hayashi, Saburo Yamamoto, Tetsu Mukai, Manabu Ato, Duong Huu Thai, Huynh Thi Thao Nhi, Tsuyoshi Shirai, Satoshi Shibata, Fumiko Obata, Jun Fujii, Seiya Yamayoshi, Maki Kiso, Sohkichi Matsumoto

    Microbiology and Immunology   2024.1

     More details

    Publishing type:Research paper (scientific journal)  

    DOI: 10.1111/1348-0421.13116

    researchmap

  • USP10 inhibits aberrant cytoplasmic aggregation of TDP-43 by promoting stress granule clearance. Reviewed International journal

    Masahiko Takahashi, Hiroki Kitaura, Akiyoshi Kakita, Taichi Kakihana, Yoshinori Katsuragi, Osamu Onodera, Yuriko Iwakura, Hiroyuki Nawa, Masaaki Komatsu, Masahiro Fujii

    Molecular and cellular biology   42 ( 3 )   MCB0039321   2022.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    TDP-43 is a causative factor of amyotrophic lateral sclerosis (ALS). Cytoplasmic TDP-43 aggregates in neurons are a hallmark pathology of ALS. Under various stress conditions, TDP-43 localizes sequentially to two cytoplasmic protein aggregates: stress granules (SGs) first, and then aggresomes. Accumulating evidence suggests that delayed clearance of TDP-43-positive SGs is associated with pathological TDP-43 aggregates in ALS. We found that USP10 promotes the clearance of TDP-43-positive SGs in cells treated with proteasome inhibitor, thereby promoting the formation of TDP-43-positive aggresomes, and the depletion of USP10 increases the amount of insoluble TDP-35, a cleaved product of TDP-43, in the cytoplasm. TDP-35 interacted with USP10 in an RNA-binding dependent manner; however, impaired RNA-binding of TDP-35 reduced the localization in SGs and aggresomes and induced USP10-negative TDP-35 aggregates. Immunohistochemistry showed that most of the cytoplasmic TDP-43/TDP-35-aggregates in the neurons of ALS patients were USP10-negative. Our findings suggest that USP10 inhibits aberrant aggregation of TDP-43/TDP-35 in the cytoplasm of neuronal cells by promoting the clearance of TDP-43/TDP-35-positive SGs and facilitating the formation of TDP-43/TDP-35-positive aggresomes.

    DOI: 10.1128/MCB.00393-21

    PubMed

    researchmap

  • USP10 inhibits the dopamine-induced reactive oxygen species-dependent apoptosis of neuronal cells by stimulating the antioxidant Nrf2 activity. Reviewed International journal

    Junya Sango, Taichi Kakihana, Masahiko Takahashi, Yoshinori Katsuragi, Sergei Anisimov, Masaaki Komatsu, Masahiro Fujii

    The Journal of Biological Chemistry   298 ( 1 )   101448 - 101448   2021.11

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

    Nrf2 is an antioxidant transcriptional activator in many types of cells, and its dysfunction plays key roles in a variety of human disorders, including Parkinson's disease (PD). PD is characterized by the selective loss of dopaminergic neurons in PD-affected brain regions. Dopamine treatment of neuronal cells stimulates the production of reactive oxygen species (ROS) and increases ROS-dependent neuronal apoptosis. In this study, we found that the ubiquitin-specific protease 10 (USP10) protein reduces dopamine-induced ROS production of neuronal cells and ROS-dependent apoptosis by stimulating the antioxidant activity of Nrf2. USP10 interacted with the Nrf2 activator p62, increased the phosphorylation of p62, increased the interaction of p62 with the Nrf2 inhibitor Keap1, and stimulated Nrf2 antioxidant transcriptional activity. In addition, USP10 augmented dopamine-induced Nrf2 translation. Taken together, these results indicate that USP10 is a key regulator of Nrf2 antioxidant activity in neuronal cells and suggest that USP10 activators are promising therapeutic agents for oxidative stress-related diseases, including PD.

    DOI: 10.1016/j.jbc.2021.101448

    PubMed

    researchmap

  • The optineurin/TIA1 pathway inhibits aberrant stress granule formation and reduces ubiquitinated TDP-43. Reviewed International journal

    Taichi Kakihana, Masahiko Takahashi, Yoshinori Katsuragi, Shun-Ichi Yamashita, Junya Sango, Tomotake Kanki, Osamu Onodera, Masahiro Fujii

    iScience   24 ( 7 )   102733 - 102733   2021.7

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

    Amyotrophic lateral sclerosis (ALS) is a degenerative motor neuron disease characterized by the formation of cytoplasmic ubiquitinated TDP-43 protein aggregates in motor neurons. Stress granules (SGs) are stress-induced cytoplasmic protein aggregates containing various neuropathogenic proteins, including TDP-43. Several studies have suggested that SGs are the initial site of the formation of pathogenic ubiquitinated TDP-43 aggregates in ALS neurons. Mutations in the optineurin (OPTN) and TIA1 genes are causative factors of familial ALS with TDP-43 aggregation pathology. We found that both OPTN depletion and ALS-associated OPTN mutations upregulated the TIA1 level in cells recovered from heat shock, and this upregulated TIA1 increased the amount of ubiquitinated TDP-43. Ubiquitinated TDP-43 induced by OPTN depletion was localized in SGs. Our study suggests that ALS-associated loss-of-function mutants of OPTN increase the amount of ubiquitinated TDP-43 in neurons by increasing the expression of TIA1, thereby promoting the aggregation of ubiquitinated TDP-43.

    DOI: 10.1016/j.isci.2021.102733

    PubMed

    researchmap

  • G3BP1 inhibits ubiquitinated protein aggregations induced by p62 and USP10. Reviewed International journal

    Anisimov S, Takahashi M, Kakihana T, Katsuragi Y, Kitaura H, Zhang L, Kakita A, Fujii M

    Scientific Reports   9 ( 1 )   12896 - 12896   2019.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    The aberrant accumulation of ubiquitinated protein aggregates in cells plays a critical role in the pathogenesis of several degenerative diseases, including Parkinson disease (PD) and cystic fibrosis (CF). In this study, we found that Ras GTPase-activating protein-binding protein 1 (G3BP1) inhibits ubiquitinated protein aggregations induced by p62 and USP10 in cultured cells. p62 is a ubiquitin receptor, and p62 and its binding partner USP10 have been shown to augment ubiquitinated protein aggregation. G3BP1 interacted with p62 and USP10 and inhibited p62/USP10-induced protein aggregation. The G3BP1 inhibition of protein aggregations targeted two aggregation-prone proteins, α-synuclein and CFTR-ΔF508, which are causative factors of PD and CF, respectively. G3BP1 depletion increased the amounts of ubiquitinated α-synuclein and CFTR-ΔF508 protein. A proteasome reporter indicated that G3BP1 depletion inhibits the proteasome activity. We herein present evidence that G3BP1, p62 and USP10 together control ubiquitinated protein toxicity by controlling both ubiquitination and aggregation. Taken together, these results suggest that G3BP1, p62 and USP10 could be therapeutic targets for ubiquitinated protein aggregation disorders, including PD and CF.

    DOI: 10.1038/s41598-019-46237-1

    PubMed

    researchmap

  • USP10 is a critical factor for Tau-positive stress granule formation in neuronal cells. Reviewed International journal

    Svetlana Piatnitskaia, Masahiko Takahashi, Hiroki Kitaura, Yoshinori Katsuragi, Taichi Kakihana, Lu Zhang, Akiyoshi Kakita, Yuriko Iwakura, Hiroyuki Nawa, Takeshi Miura, Takeshi Ikeuchi, Toshifumi Hara, Masahiro Fujii

    Scientific Reports   9 ( 1 )   10591 - 10591   2019.7

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Tau aggregates in neurons of brain lesions is a hallmark pathology of tauopathies, including Alzheimer's disease (AD). Recent studies suggest that the RNA-binding protein TIA1 initiates Tau aggregation by inducing the formation of stress granules (SGs) containing Tau. SGs are stress-inducible cytoplasmic protein aggregates containing many RNA-binding proteins that has been implicated as an initial site of multiple pathogenic protein aggregates in several neurodegenerative diseases. In this study, we found that ubiquitin-specific protease 10 (USP10) is a critical factor for the formation of Tau/TIA1/USP10-positive SGs. Proteasome inhibition or TIA1-overexpression in HT22 neuronal cells induced the formation of TIA1/Tau-positive SGs, and the formations were severely attenuated by depletion of USP10. In addition, the overexpression of USP10 without stress stimuli in HT22 cells induced TIA1/Tau/USP10-positive SGs in a deubiquitinase-independent manner. In AD brain lesions, USP10 was colocalized with Tau aggregates in the cell body of neurons. The present findings suggest that USP10 plays a key role in the initiation of pathogenic Tau aggregation in AD through SG formation.

    DOI: 10.1038/s41598-019-47033-7

    PubMed

    researchmap

  • USP10 Is a Driver of Ubiquitinated Protein Aggregation and Aggresome Formation to Inhibit Apoptosis. Reviewed International journal

    Takahashi M, Kitaura H, Kakita A, Kakihana T, Katsuragi Y, Nameta M, Zhang L, Iwakura Y, Nawa H, Higuchi M, Komatsu M, Fujii M

    iScience   9   433 - 450   2018.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Accumulation of ubiquitinated proteins is cytotoxic, but cells inactivate these cytotoxicities by inducing aggresome formation. We found that ubiquitin-specific protease 10 (USP10) inhibits ubiquitinated protein-induced apoptosis by inducing aggresome formation. USP10 interacted with the ubiquitin receptor p62 and the interaction augmented p62-dependent ubiquitinated protein aggregation and aggresome formation, thereby cooperatively inhibiting apoptosis. We provide evidence that USP10/p62-induced protein aggregates inhibit proteasome activity, which increases the amount of ubiquitinated proteins and promotes aggresome formation. USP10 induced aggresomes containing α-synuclein, a pathogenic protein in Parkinson disease, in cultured cells. In Parkinson disease brains, USP10 was colocalized with α-synuclein in the disease-linked aggresome-like inclusion Lewy bodies, suggesting that USP10 inhibits α-synuclein-induced neurotoxicity by promoting Lewy body formation. Collectively, these findings suggest that USP10 is a critical factor to control protein aggregation, aggresome formation, and cytotoxicity in protein-aggregation-related diseases.

    DOI: 10.1016/j.isci.2018.11.006

    PubMed

    researchmap

  • Proteotoxic stress and ageing triggers the loss of redox homeostasis across cellular compartments Reviewed

    Janine Kirstein, Daisuke Morito, Taichi Kakihana, Munechika Sugihara, Anita Minnen, Mark S. Hipp, Carmen Nussbaum-Krammer, Prasad Kasturi, F. Ulrich Hartl, Kazuhiro Nagata, Richard I. Morimoto

    The EMBO JOURNAL   34 ( 18 )   2334 - 2349   2015.9

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:WILEY-BLACKWELL  

    The cellular proteostasis network integrates the protein folding and clearance machineries in multiple sub-cellular compartments of the eukaryotic cell. The endoplasmic reticulum (ER) is the site of synthesis and folding of membrane and secretory proteins. A distinctive feature of the ER is its tightly controlled redox homeostasis necessary for the formation of inter-and intra-molecular disulphide bonds. Employing genetically encoded in vivo sensors reporting on the redox state in an organelle-specific manner, we show in the nematode Caenorhabditis elegans that the redox state of the ER is subject to profound changes during worm lifetime. In young animals, the ER is oxidizing and this shifts towards reducing conditions during ageing, whereas in the cytosol the redox state becomes more oxidizing with age. Likewise, the redox state in the cytosol and the ER change in an opposing manner in response to proteotoxic challenges in C. elegans and in HeLa cells revealing conservation of redox homeostasis. Moreover, we show that organelle redox homeostasis is regulated across tissues within C. elegans providing a new measure for organismal fitness.

    DOI: 10.15252/embj.201591711

    Web of Science

    PubMed

    researchmap

  • Dynamic Regulation of Ero1 alpha and Peroxiredoxin 4 Localization in the Secretory Pathway Reviewed

    Taichi Kakihana, Kazutaka Araki, Stefano Vavassori, Shun-ichiro Iemura, Margherita Cortini, Claudio Fagioli, Tohru Natsume, Roberto Sitia, Kazuhiro Nagata

    JOURNAL OF BIOLOGICAL CHEMISTRY   288 ( 41 )   29586 - 29594   2013.10

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC  

    In the early secretory compartment (ESC), a network of chaperones and enzymes assists oxidative folding of nascent proteins. Ero1 flavoproteins oxidize protein disulfide isomerase (PDI), generating H2O2 as a byproduct. Peroxiredoxin 4 (Prx4) can utilize luminal H2O2 to oxidize PDI, thus favoring oxidative folding while limiting oxidative stress. Interestingly, neither ER oxidase contains known ER retention signal(s), raising the question of how cells prevent their secretion. Here we show that the two proteins share similar intracellular localization mechanisms. Their secretion is prevented by sequential interactions with PDI and ERp44, two resident proteins of the ESC-bearing KDEL-like motifs. PDI binds preferentially Ero1 alpha, whereas ERp44 equally retains Ero1 alpha and Prx4. The different binding properties of Ero1 alpha and Prx4 increase the robustness of ER redox homeostasis.

    DOI: 10.1074/jbc.M113.467845

    Web of Science

    PubMed

    researchmap

  • Peroxides and Peroxidases in the Endoplasmic Reticulum: Integrating Redox Homeostasis and Oxidative Folding Reviewed

    Taichi Kakihana, Kazuhiro Nagata, Roberto Sitia

    ANTIOXIDANTS & REDOX SIGNALING   16 ( 8 )   763 - 771   2012.4

     More details

    Authorship:Lead author   Language:English   Publisher:MARY ANN LIEBERT, INC  

    Significance: The endoplasmic reticulum (ER), the port of entry into the secretory pathway, is a complex organelle that performs many fundamental functions, including protein synthesis and quality control, Ca2+ storage and signaling. Redox homeostasis is of paramount importance for allowing the efficient folding of secretory proteins, most of which contain essential disulfide bonds. Recent Advances: revealed that an intricate protein network sustains the processes of disulfide bond formation and reshuffling in the ER. Remarkably, H2O2, which is a known by-product of Ero1 flavoproteins in cells, is utilized by peroxiredoxin-4 and glutathione peroxidases-7 and -8, which reside in the mammalian secretory compartment and further fuel oxidative protein folding while limiting oxidative damage. Critical Issues: that remain to be addressed are the sources, diffusibility and signaling role(s) of H2O2 in and between organelles and cells, how the emerging redundancy in the systems is coupled to precise regulation, and how the distinct pathways operating in the early secretory compartment are integrated with one another. Future Directions: A further dissection of the pathways that integrate folding, redox homeostasis, and signaling in the early secretory pathway may allow to manipulate protein homeostasis and survival-death decisions in degenerative diseases or cancer. Antioxid. Redox Signal. 16, 763-771.

    DOI: 10.1089/ars.2011.4238

    Web of Science

    PubMed

    researchmap

▶ display all

Presentations

  • Inhibition of dopamine-induced cell death via activation of NRF2 antioxidative pathway

    Taichi Kakihana, Junya Sango, Masahiko Takahashi, Masahiro Fujii

    The 96th the Biochemisty Society of Japan, Fukuoka (Japan)  2023.11 

     More details

    Presentation type:Poster presentation  

    researchmap

  • p62-body and stress granule regulate dopamine-induced neuronal cell death through activation of the Nrf2 antioxidant pathway

    Taichi Kakihana, Junya Sango, Masahiko Takahashi, Masahiro Fujii

    2023.7 

     More details

    Presentation type:Poster presentation  

    researchmap

  • 神経変性疾患におけるストレス顆粒形成異常の分子メカニズム Invited

    垣花 太一

    東北大学学際科学部フロンティア研究所セミナー、仙台市  2023.3 

     More details

    Presentation type:Oral presentation (invited, special)  

    researchmap

  • The mechanism for formation of aberrant stress granules

    2022.7 

     More details

    Presentation type:Oral presentation (general)  

    researchmap

  • Optineurin/TIA1 pathway reduces ubiquitinated TDP-43 aggregation by promoting stress granule clearance

    Kakihana T, Takahashi M, Katsuragi Y, Yamashita SH, Sango J, Kanki T, Onodera O, Fujii M

    2022.6 

     More details

    Presentation type:Poster presentation  

    researchmap

  • Optineurin prevents aberrant stress granule formation by reducing TIA1 expression

    Taichi Kakihana, Masahiro Fujii

    2019.9 

     More details

    Presentation type:Poster presentation  

    researchmap

  • Dynamic regulation of Ero1α and Prx4 localization in the secretory pathway

    Taichi Kakihana, Kazutaka Araki, Stefano Vavassori, Shun-ichiro Iemura, Tohru Natsume, Roberto Sitia, Kazuhiro Nagata

    The 34th The Molecular Biology Society of Japan, Yokohama (Japan)  2012.12 

     More details

    Presentation type:Oral presentation (general)  

    researchmap

  • Dynamic regulation of Ero1α and Prx4 localization in the secretory pathway.

    Taichi Kakihana, Kazutaka Araki, Stefano Vavassori, Shun-ichiro Iemura, Tohru Natsume, Roberto Sitia, Kazuhiro Nagata

    FASEB summer research coferences “Quality Life through Research”, Saxtons River (USA)  2012.8 

     More details

    Presentation type:Poster presentation  

    researchmap

  • Non-canonical retention of Ero1 and Prx4 maintains redox homeostasis.

    Taichi Kakihana, Kazutaka Araki, Stefano Vavassori, Margherita Cortini, Claudio Fagioli, Shun-ichiro Iemura, Tohru Natsume, Roberto Sitia, Kazuhiro Nagata

    Cold Spring Harbor Asia Conference,“Protein Homeostasis in Health & Disease”, Suzhou (China)  2011.9 

     More details

    Presentation type:Oral presentation (general)  

    researchmap

  • Non-canonical retention of Ero1 and Prx4 maintains redox homeostasis

    Taichi Kakihana, Kazutaka Araki, Stefano Vavassori, Margherita Cortini, Claudio Fagioli, Shun-ichiro Iemura, Tohru Natsume, Roberto Sitia, Kazuhiro Nagata

    “Quality Control Folding and Degradation of Proteins in the Endoplasmic Reticulum”, Ascona (Switzerland)  2011.9 

     More details

    Presentation type:Poster presentation  

    researchmap

  • Non-canonical retention of Ero1 and Prx4 maintains redox homeostasis

    Taichi Kakihana, Kazutaka Araki, Stefano Vavassori, Shun-ichiro Iemura, Tohru Natsume, Roberto Sitia, Kazuhiro Nagata

    2011.6 

     More details

    Presentation type:Poster presentation  

    researchmap

  • The novel mechanism for localization of antioxidative enzyme Peroxiredoxin-4 (Prx4) in the ER

    Taichi Kakihana, Kazutaka Araki, Stefano Vavassori, Shun-ichiro Iemura, Tohru Natsume, Roberto Sitia, Kazuhiro Nagata

    2010.12 

     More details

    Presentation type:Poster presentation  

    researchmap

  • The novel mechanism for localization of antioxidative enzyme Peroxiredoxin-4 (Prx4) in the ER

    Taichi Kakihana, Kazutaka Araki, Stefano Vavassori, Margherita Cortini, Claudio Fagioli, Shun-ichiro Iemura, Tohru Natsume, Roberto Sitia, Kazuhiro Nagata

    The 3rd International Symposium on Protein Community, Nara (Japan)  2010.9 

     More details

    Presentation type:Poster presentation  

    researchmap

  • ERp44 regulates the secretion of Peroxiredoxin-4 (Prx4) by direct binding

    Taichi Kakihana, Kazutaka Araki, Stefano Vavassori, Shun-ichiro Iemura, Tohru Natsume, Roberto Sitia, Kazuhiro Nagata

    2010.5 

     More details

    Presentation type:Poster presentation  

    researchmap

▶ display all

Awards

  • 武田科学振興財団 医学系研究助成

    2023  

     More details

  • 令和4年度新潟大学優秀論文賞

    2022  

     More details

  • 令和4年度塚田医学奨学金

    2022  

     More details

Research Projects

  • ウイルス感染症におけるリボソーム翻訳品質管理機構を理解する

    Grant number:24K09364

    2024.4 - 2027.3

    System name:科学研究費助成事業

    Research category:基盤研究(C)

    Awarding organization:日本学術振興会

    垣花 太一

      More details

    Grant amount:\4550000 ( Direct Cost: \3500000 、 Indirect Cost:\1050000 )

    researchmap

  • 筋萎縮性側索硬化症において神経細胞死を抑制する分子機構

    2023.11 - 2028.3

    System name:医学系研究助成

    Awarding organization:武田科学振興財団

      More details

    Authorship:Principal investigator 

    researchmap

  • 異常なストレス顆粒によるタンパク質凝集体形成メカニズムを解明する

    Grant number:23KK0302

    2023.2 - 2026.3

    System name:科学研究費助成事業

    Research category:国際共同研究加速基金(国際共同研究強化)

    Awarding organization:日本学術振興会

    垣花 太一

      More details

    Grant amount:\15600000 ( Direct Cost: \12000000 、 Indirect Cost:\3600000 )

    researchmap

  • 異所性のDNAがもたらす老化・加齢関連疾患・感染症病態の網羅的比較解析

    Grant number:22H00501

    2022.4 - 2027.3

    System name:科学研究費助成事業 基盤研究(A)

    Research category:基盤研究(A)

    Awarding organization:日本学術振興会

    松井 秀彰, 垣花 太一, 渡邉 香奈子

      More details

    Authorship:Coinvestigator(s) 

    Grant amount:\41860000 ( Direct Cost: \32200000 、 Indirect Cost:\9660000 )

    researchmap

  • 異常なストレス顆粒によるTDP-43凝集体の誘導機構の解明

    Grant number:21K07291

    2021.4 - 2024.3

    System name:科学研究費助成事業 基盤研究(C)

    Research category:基盤研究(C)

    Awarding organization:日本学術振興会

    垣花 太一

      More details

    Authorship:Principal investigator 

    Grant amount:\4290000 ( Direct Cost: \3300000 、 Indirect Cost:\990000 )

    筋萎縮性側索硬化症(amyotrophic lateral sclerosis:ALS)は、脳幹と脊髄の運動神経細胞の機能障害と細胞死、それによって引き起こされる運動障害を特徴とする神経変性疾患である。TDP-43は家族性および弧発性ALSの原因タンパク質である。ALSの運動神経細胞では、ユビキチン化したTDP-43が細胞質に凝集体を形成し、この凝集体が神経細胞の機能不全と細胞死を誘導し、ALSを発症する。ストレス顆粒はストレス下で一過性に形成される非膜オルガネラである。最近、ユビキチン化TDP-43の凝集体形成にストレス顆粒が関与することがわかってきた。本研究の目的は、ストレス顆粒形成の品質管理機構を明らかにし、ALSにおけるTDP-43凝集体形成のメカニズムを明らかにすることである。昨年度は、下記の3つの研究成果をあげることができた。1)ALSにおいてTDP-43蛋白質の分解を誘導し、異常なTDP-43凝集体の形成を抑制する分子メカニズムを解明できた(Kakihana, iScience, 2021)、2)ALSの原因遺伝子であるTDP-43に結合し、病的なTDP-43凝集体の形成を抑制する分子を発見できた(Takahashi, Mol Cell Biol, 2022)、3)ドーパミン神経細胞の細胞死を抑制する新たな分子を発見できた(Sango, J Biol Chem, 2022)。

    researchmap

  • Regulation of arsenite sensitivity in adult T-cell leukemia by MAGI-1

    Grant number:19K17822

    2019.4 - 2021.3

    System name:Grants-in-Aid for Scientific Research

    Research category:Grant-in-Aid for Early-Career Scientists

    Awarding organization:Japan Society for the Promotion of Science

    KAKIHANA Taichi

      More details

    Authorship:Principal investigator 

    Grant amount:\4290000 ( Direct Cost: \3300000 、 Indirect Cost:\990000 )

    Human T-cell leukemia virus type I (HTLV-1) is the causative virus of adult T-cell leukemia (ATL). The viral protein Tax had been identified to bind to MAGI-1 (Membrane Associated Guanylate Kinase, WW And PDZ Domain Containing 1) as a host factor. In this study, we found that Tax enhances cell proliferation and ROS production by inhibiting the function of MAGI-1. Furthermore, we found that Tax function could be inhibited by MAGI-1.

    researchmap

  • Crosstalk between stress granules and autophagy in protein degradation

    Grant number:15H04704

    2015.4 - 2018.3

    System name:Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (B)

    Research category:Grant-in-Aid for Scientific Research (B)

    Awarding organization:Japan Society for the Promotion of Science

    Fujii Masahiro, Komatsu Masaaki, Takahashi Masahiko, Kageyama Shun, Hara Toshifumi, Higuchi Masaya, Saito Kousuke, Koyama Akihide, Katsuragi Yoshinori, Kakihana Taichi

      More details

    Authorship:Collaborating Investigator(s) (not designated on Grant-in-Aid) 

    Grant amount:\16900000 ( Direct Cost: \13000000 、 Indirect Cost:\3900000 )

    USP10 plays an important role in the formation of stress granule. I established systemic USP10-knockout (USP10-KO) mice. USP10-KO mice developed pancytopenia, and died within 300 days. This pancytopenia was completely restored by transplantation of normal bone marrows into USP10-KO mice. Furthermore, I found that apoptosis of hematopoietic stem cells is aggravated in USP10-KO mice. SCL (stem cell factor) inhibits the apoptosis of hematopoietic stem cells, but this inhibition was significantly attenuated by USP10 depletion in hematopoietic stem cells. USP10 mutants indicated that deubiquitinase activity of USP10 is critical for inhibition of apoptosis of hematopoietic stem cells. The present study suggests that USP10 and stress granules participate in the maintenance of hematopoietic stem cells.

    researchmap

  • Analysis of dynamics of autophagosome formation by electron tomography

    Grant number:15K18489

    2015.4 - 2017.3

    System name:Grants-in-Aid for Scientific Research Grant-in-Aid for Young Scientists (B)

    Research category:Grant-in-Aid for Young Scientists (B)

    Awarding organization:Japan Society for the Promotion of Science

    Kakihana Taichi

      More details

    Authorship:Principal investigator 

    Grant amount:\4290000 ( Direct Cost: \3300000 、 Indirect Cost:\990000 )

    Autophagosome is known to be formed at mitochondria associated ER membrane and cradle structure of ER was observed nearby. This time we attempted screening of ER shapers in autophagosome formation. As a result, we succeeded in hitting a candidate. Therefore, we are now preparing to report our findings.

    researchmap

  • 小胞体内酸化還元バランスのダイナミックな制御機構の解明

    Grant number:12J04142

    2012 - 2013

    System name:科学研究費助成事業 特別研究員奨励費

    Research category:特別研究員奨励費

    Awarding organization:日本学術振興会

    垣花 太一

      More details

    Authorship:Principal investigator 

    Grant amount:\1800000 ( Direct Cost: \1800000 )

    本年度、私は二つのテーマについて研究を行った。一つ目は小胞体内で膨大な量の分泌タンパク質のフォールディングを担う小胞体酸化酵素、ErolとPrx4の局在メカニズムに関する研究である。これら二つの酸化酵素は、小胞体に必須な酵素であるにも関わらず、小胞体局在タンパク質を小胞体に係留させる小胞体残留シグナルをもたないという、非常に興味深い特徴を有している。私は、この二つの酸化酵素が、ERp44とPDIによって、小胞体と小胞体一ゴルジ中間体の二段階で係留を受けていることを明らかにした。この成果は、2013年10月付けでJournal of Biological Chemistry掲載された。さらに、2013年10月に金沢大学で行われた第8回小胞体ストレス研究会で私が口頭発表を行い大きな反響を得た。
    二つ目のテーマは、サイトゾルでのタンパク質のホメオスタシスの乱れが、別のオルガネラである小胞体にどのような影響を及ぼすかを研究目的に研究を行った。これまで、個々のオルガネラ単位でのタンパク質の品質管理機構については多くの知見が報告されているが、オルガネラを隔離する脂質二重膜を越えて、オルガネラ間でのタンパク質の品質管理及び恒常性維持機構については、全く研究が行われていなかった。私は、North Western大学のMorimoto. R教授とMax Planck研究所のHartl. U教授らとの共同研究の下、サイトゾルでのプロテアソーム阻害や凝集性タンパク質の発現、さらに老化に伴って、小胞体内のレドックスバランスを還元的にシフトさせる現象を発見した。小胞体内がレドックス環境は分泌タンパク質の分泌遅延や、カルシウム制御の乱れを引き起こすことが知られている。こうした背景から、我々の発見した現象はサイトゾルでのタンパク質の品質管理の乱れが、小胞体に障害をもたらすだけでなく、細胞内外での機能制御の乱れへと発展するという新たな経路を示唆する。これらの知見をまとめ、現在国際科学誌に投稿準備を進めている

    researchmap

▶ display all

 

Teaching Experience (researchmap)

  • 生体防御と感染(ウイルス学)

    2017.6
    Institution name:新潟大学医学部医学科

     More details

  • 生体防御と感染(総合)

    2017.6
    Institution name:新潟大学医学部医学科

     More details