Updated on 2025/09/18

写真a

 
HASHIZUME Kenta
 
Organization
Academic Assembly Institute of Science and Technology Fundamental Sciences Assistant Professor
Graduate School of Science and Technology Fundamental Sciences Assistant Professor
Faculty of Science Department of Science Assistant Professor
Title
Assistant Professor
External link

Degree

  • 博士(理学) ( 2017.11   京都大学 )

Research Interests

  • Minimal model theory

  • Birational geometry

Research Areas

  • Natural Science / Algebra

Research History (researchmap)

  • Institute for Research Administration, Niigata University

    2023.4

      More details

  • Department of Mathematics, Faculty of Science, Niigata University   Assistant Professor

    2023.4

      More details

  • Center for the Promotion of Interdisciplinary Education and Research, Kyoto University

    2021.12 - 2023.3

      More details

    Country:Japan

    researchmap

  • Graduate School of Mathematical Sciences, The University of Tokyo

    2019.4 - 2021.11

      More details

    Country:Japan

    researchmap

  • Department of Mathematics, Graduate School of Science, Kyoto University

    2017.12 - 2019.3

      More details

    Country:Japan

    researchmap

  • Department of Mathematics, Graduate School of Science, Kyoto University

    2016.4 - 2017.11

      More details

    Country:Japan

    researchmap

▶ display all

Research History

  • Niigata University   Fundamental Sciences, Graduate School of Science and Technology   Assistant Professor

    2023.4

  • Niigata University   Department of Science, Faculty of Science   Assistant Professor

    2023.4

  • Niigata University   Fundamental Sciences, Institute of Science and Technology, Academic Assembly   Assistant Professor

    2023.4

Education

  • Kyoto University   Graduate School of Science   Department of Mathematics

    2016.4 - 2017.11

      More details

    Notes: 博士課程

    researchmap

  • Kyoto University   Graduate School of Science   Department of Mathematics

    2014.4 - 2016.3

      More details

    Notes: 修士課程

    researchmap

  • Department of Science, Faculty of Science, Kyoto University

    2010.4 - 2014.3

      More details

Professional Memberships

  • The Mathematical Society of Japan

    2018.4

      More details

 

Papers

  • Minimal Model Program for Normal Pairs along log Canonical Locus Reviewed

    Kenta Hashizume

    Forum of Mathematics, Sigma   13 ( e143 )   2025.9

     More details

    Publishing type:Research paper (scientific journal)   Publisher:Cambridge University Press (CUP)  

    Abstract

    Let $(X,\Delta )$ be a normal pair with a projective morphism $X \to Z$ and let A be a relatively ample $\mathbb {R}$ -divisor on X. We prove the termination of some minimal model program on $(X,\Delta +A)/Z$ and the abundance conjecture for its minimal model under assumptions that the non-nef locus of $K_{X}+\Delta +A$ over Z does not intersect the non-lc locus of $(X,\Delta )$ and that the restriction of $K_{X}+\Delta +A$ to the non-lc locus of $(X,\Delta )$ is semi-ample over Z.

    DOI: 10.1017/fms.2025.10092

    researchmap

  • Semistable reduction for complex analytic spaces Reviewed

    Makoto Enokizono, Kenta Hashizume

    Transactions of the American Mathematical Society   2025.8

     More details

    Publishing type:Research paper (scientific journal)   Publisher:American Mathematical Society (AMS)  

    <p>Semistable reduction theorem for projective morphisms in the category of complex analytic spaces is established.</p>

    DOI: 10.1090/tran/9365

    researchmap

    Other Link: https://www.ams.org/tran/0000-000-00/S0002-9947-2025-09365-6/S0002-9947-2025-09365-6.pdf

  • On boundedness and moduli spaces of K-stable Calabi–Yau fibrations over curves Reviewed

    Kenta Hashizume, Masafumi Hattori

    Geometry & Topology   29 ( 3 )   1619 - 1691   2025.5

     More details

    Publishing type:Research paper (scientific journal)   Publisher:Mathematical Sciences Publishers  

    DOI: 10.2140/gt.2025.29.1619

    researchmap

  • Finiteness of log Abundant log Canonical Pairs in log Minimal Model Program with Scaling Reviewed

    Kenta Hashizume

    Michigan Mathematical Journal   74 ( 5 )   2024.11

     More details

    Publishing type:Research paper (scientific journal)   Publisher:Michigan Mathematical Journal  

    DOI: 10.1307/mmj/20226207

    researchmap

  • A note on lc‐trivial fibrations Reviewed

    Kenta Hashizume

    Bulletin of the London Mathematical Society   56 ( 2 )   551 - 565   2023.11

     More details

    Publishing type:Research paper (scientific journal)   Publisher:Wiley  

    Abstract

    For every lc‐trivial fibration from an lc pair, we prove that after a base change, there exists a positive integer , depending only on the dimension of , the Cartier index of , and the sufficiently general fibers of , such that is linearly equivalent to the pullback of a Cartier divisor.

    DOI: 10.1112/blms.12949

    researchmap

  • ADJUNCTION AND INVERSION OF ADJUNCTION Reviewed

    OSAMU FUJINO, KENTA HASHIZUME

    Nagoya Mathematical Journal   249   119 - 147   2023.3

     More details

    Publishing type:Research paper (scientific journal)   Publisher:Cambridge University Press (CUP)  

    Abstract

    We establish adjunction and inversion of adjunction for log canonical centers of arbitrary codimension in full generality.

    DOI: 10.1017/nmj.2022.24

    researchmap

  • Existence of log canonical modifications and its applications Reviewed

    Osamu Fujino, Kenta Hashizume

    European Journal of Mathematics   9 ( 1 )   2023.2

     More details

    Publishing type:Research paper (scientific journal)   Publisher:Springer Science and Business Media LLC  

    DOI: 10.1007/s40879-023-00598-0

    researchmap

    Other Link: https://link.springer.com/article/10.1007/s40879-023-00598-0/fulltext.html

  • Iitaka fibrations for dlt pairs polarized by a nef and log big divisor Reviewed

    Kenta Hashizume

    Forum of Mathematics, Sigma   10 ( e85 )   2022.10

     More details

    Publishing type:Research paper (scientific journal)   Publisher:Cambridge University Press (CUP)  

    Abstract

    We study lc pairs polarized by a nef and log big divisor. After proving the minimal model theory for projective lc pairs polarized by a nef and log big divisor, we prove the effectivity of the Iitaka fibrations and some boundedness results for dlt pairs polarized by a nef and log big divisor.

    DOI: 10.1017/fms.2022.75

    researchmap

  • Non-vanishing theorem for generalized log canonical pairs with a polarization Reviewed

    Kenta Hashizume

    Selecta Mathematica   28 ( 4 )   2022.9

     More details

    Publishing type:Research paper (scientific journal)   Publisher:Springer Science and Business Media LLC  

    DOI: 10.1007/s00029-022-00795-x

    researchmap

    Other Link: https://link.springer.com/article/10.1007/s00029-022-00795-x/fulltext.html

  • On inversion of adjunction Reviewed

    Osamu Fujino, Kenta Hashizume

    Proceedings of the Japan Academy, Series A, Mathematical Sciences   98 ( 2 )   13 - 18   2022.2

     More details

    Publishing type:Research paper (scientific journal)   Publisher:Project Euclid  

    DOI: 10.3792/pjaa.98.003

    researchmap

  • Crepant semi-divisorial log terminal model Reviewed

    Kenta Hashizume

    Épijournal de Géométrie Algébrique   Volume 5   2021.12

     More details

    Publishing type:Research paper (scientific journal)   Publisher:Centre pour la Communication Scientifique Directe (CCSD)  

    We prove the existence of a crepant sdlt model for slc pairs whoseirreducible components are normal in codimension one.

    DOI: 10.46298/epiga.2021.7626

    researchmap

  • Minimal model program for log canonical threefolds in positive characteristic Reviewed

    Kenta Hashizume, Yusuke Nakamura, Hiromu Tanaka

    Mathematical Research Letters   27 ( 4 )   1003 - 1054   2020.12

     More details

    Publishing type:Research paper (scientific journal)   Publisher:International Press of Boston  

    DOI: 10.4310/mrl.2020.v27.n4.a3

    researchmap

  • Log Iitaka conjecture for abundant log canonical fibrations Reviewed

    Kenta Hashizume

    Proceedings of the Japan Academy, Series A, Mathematical Sciences   96 ( 10 )   87 - 92   2020.12

     More details

    Publishing type:Research paper (scientific journal)   Publisher:Project Euclid  

    DOI: 10.3792/pjaa.96.017

    researchmap

  • Relations between two log minimal models of log canonical pairs Reviewed

    Kenta Hashizume

    International Journal of Mathematics   31 ( 13 )   2050103 - 2050103   2020.10

     More details

    Publishing type:Research paper (scientific journal)   Publisher:World Scientific Pub Co Pte Lt  

    We study relations between two log minimal models of a fixed lc pair. For any two log minimal models of an lc pair constructed with log MMP, we prove that there are small birational models of the log minimal models which can be connected by a sequence of flops, and the two log minimal models share some properties. We also give examples of two log minimal models of an lc pair which have different properties.

    DOI: 10.1142/s0129167x20501037

    researchmap

  • A class of singularity of arbitrary pairs and log canonicalizations Reviewed

    Kenta Hashizume

    Asian Journal of Mathematics   24 ( 2 )   207 - 238   2020.9

     More details

    Publishing type:Research paper (scientific journal)   Publisher:International Press of Boston  

    DOI: 10.4310/ajm.2020.v24.n2.a2

    researchmap

  • On minimal model theory for log abundant lc pairs Reviewed

    Kenta Hashizume, Zheng-Yu Hu

    Journal für die reine und angewandte Mathematik (Crelles Journal)   2020 ( 767 )   109 - 159   2019.11

     More details

    Publishing type:Research paper (scientific journal)   Publisher:Walter de Gruyter GmbH  

    Abstract

    Under the assumption of the minimal model theory for projective klt pairs of dimension n, we establish the minimal model theory for lc pairs (X/Z,Δ){(X/Z,\Delta)} such that the log canonical divisor is relatively log abundant and its restriction to any lc center has relative numerical dimension at most n.We also give another detailed proof of results by the second author, and study termination of log MMP with scaling.

    DOI: 10.1515/crelle-2019-0032

    researchmap

    Other Link: https://www.degruyter.com/document/doi/10.1515/crelle-2019-0032/xml

  • Non-vanishing theorem for $\mathrm{lc}$ pairs admitting a Calabi–Yau pair Reviewed

    Kenta Hashizume

    Mathematical Research Letters   26 ( 4 )   1097 - 1113   2019

     More details

    Publishing type:Research paper (scientific journal)   Publisher:International Press of Boston  

    DOI: 10.4310/mrl.2019.v26.n4.a6

    researchmap

  • Minimal model theory for relatively trivial log canonical pairs Reviewed

    Kenta Hashizume

    Annales de l’institut Fourier   68 ( 5 )   2069 - 2107   2018.11

     More details

    Publishing type:Research paper (scientific journal)   Publisher:Cellule MathDoc/CEDRAM  

    DOI: 10.5802/aif.3203

    researchmap

  • Remarks on special kinds of the relative log minimal model program Reviewed

    Kenta Hashizume

    manuscripta mathematica   160 ( 3-4 )   285 - 314   2018.11

     More details

    Publishing type:Research paper (scientific journal)   Publisher:Springer Science and Business Media LLC  

    DOI: 10.1007/s00229-018-1088-y

    researchmap

    Other Link: http://link.springer.com/article/10.1007/s00229-018-1088-y/fulltext.html

  • On the Non-vanishing Conjecture and Existence of Log Minimal Models Reviewed

    Kenta Hashizume

    Publications of the Research Institute for Mathematical Sciences   54 ( 1 )   89 - 104   2018.1

     More details

    Publishing type:Research paper (scientific journal)   Publisher:European Mathematical Society - EMS - Publishing House GmbH  

    DOI: 10.4171/prims/54-1-3

    researchmap

  • Remarks on the abundance conjecture Reviewed

    Kenta Hashizume

    Proceedings of the Japan Academy, Series A, Mathematical Sciences   92 ( 9 )   101 - 106   2016.11

     More details

    Publishing type:Research paper (scientific journal)   Publisher:Project Euclid  

    DOI: 10.3792/pjaa.92.101

    researchmap

  • Finite generation of adjoint ring for log surfaces Reviewed

    Kenta Hashizume

    Journal of Mathematical Sciences, the University of Tokyo   23 ( 4 )   741 - 761   2016.10

     More details

▶ display all

Presentations

  • Minimal model theory for log canonical pairs (Part II) Invited

    Kenta Hashizume

    Special Workshop on Birational Geoemtry II  2025.8 

     More details

    Event date: 2025.8

    researchmap

  • Minimal model theory for log canonical pairs (Part I) Invited

    Kenta Hashizume

    Special Workshop on Birational Geoemtry II  2025.8 

     More details

    Event date: 2025.8

    researchmap

  • Minimal model theory for log canonical pairs and log canonical loci Invited

    Kenta Hashizume

    Yufuin Algebraic Geometry Workshop  2023.12 

     More details

    Event date: 2023.12

    researchmap

  • On effective base point freeness for klt pairs Invited

    2023.3 

     More details

    Event date: 2023.3

    researchmap

  • On effective base point freeness for klt pairs Invited

    2023.2 

     More details

    Event date: 2023.2

    researchmap

  • On lc-trivial fibrations with log big moduli parts Invited

    2022.9 

     More details

    Event date: 2022.8 - 2022.9

    researchmap

  • On log MMP for log canonical pairs of log general type Invited

    Kenta Hashizume

    The hybrid 19th Affine Algebraic Geometry Meeting  2021.3 

     More details

    Event date: 2021.3

    researchmap

  • On boundedness and moduli space of special klt-trivial fibrations Invited

    Kenta Hashizume

    New trends in moduli inspired by K-stability  2025.9 

     More details

  • On boundedness and moduli space of special klt-trivial fibrations Invited

    Kenta Hashizume

    Workshop on Fano Varieties  2025.6 

     More details

  • On minimal model program for log canonical pairs in complex analytic setting Invited

    Kenta Hashizume

    2025 TMCC Workshop on Minimal Model Program  2025.6 

     More details

  • On minimal model program for log canonical pairs in complex analytic setting Invited

    Kenta Hashizume

    Southeastern Algebraic Geometry Symposium VIII  2025.6 

     More details

  • On minimal model program for log canonical pairs in complex analytic setting Invited

    橋詰 健太

    Mini-workshop on Algebraic Geometry and Several Complex Variables in Fukuoka  2025.5 

     More details

  • On minimal model program for log canonical pairs in complex analytic setting Invited

    橋詰 健太

    阪大代数幾何学セミナー  2025.5 

     More details

  • On minimal model program for log canonical pairs in complex analytic setting Invited

    Kenta Hashizume

    The 23rd Affine Algebraic Geometry Meeting  2025.3 

     More details

  • Recent developments of boundedness of Fano varieties and klt-trivial fibrations Invited

    Kenta Hashizume

    Fano多様体と双有理幾何学  2025.2 

     More details

  • On boundedness and moduli space of special klt-trivial fibrations Invited

    Kenta Hashizume

    第2回新潟代数シンポジウム  2024.11 

     More details

  • On boundedness and moduli space of special klt-trivial fibrations Invited

    Kenta Hashizume

    Tsinghua university algebraic geometry seminar  2024.11 

     More details

  • On minimal model program for log canonical pairs in complex analytic setting Invited

    Kenta Hashizume

    Peking University Algebraic Geometry Seminar  2024.11 

     More details

  • Minimal model theory for log canonical pairs and log canonical loci Invited

    Kenta Hashizume

    Chongqing workshop on birational algebraic geometry  2024.10 

     More details

  • On boundedness and moduli space of special klt-trivial fibrations Invited

    Kenta Hashizume

    Moduli spaces and Arithmetic  2024.9 

     More details

  • 偏極化された対数的対の極小モデル理論について Invited

    橋詰 健太

    日本数学会2024年度秋季総合分科会特別講演  2024.9 

     More details

  • Minimal model theory for log canonical pairs and log canonical loci Invited

    2024.6 

     More details

  • Minimal Model Theory for Log Canonical Pairs and Log Canonical Loci Invited

    Kenta Hashizume

    NCTS Seminar in Algebraic Geometry  2023.11 

     More details

  • Birational geometry and minimal model theory Invited

    Kenta Hashizume

    Catch-all Mathematical Colloquium of Japan  2023.10 

     More details

  • log abundant条件と極小モデル理論 Invited

    橋詰 健太

    新潟代数セミナー  2023.5 

     More details

  • 対数的標準対の極小モデル理論 Invited

    橋詰 健太

    新潟代数セミナー  2023.5 

     More details

  • 高次元代数多様体と双有理幾何学 Invited

    橋詰 健太

    新潟代数セミナー  2023.4 

     More details

  • 極小モデル理論と対数的対 Invited

    橋詰 健太

    新潟代数セミナー  2023.4 

     More details

  • On effectivity of Iitaka fibrations for lc pairs with a polarization Invited

    Kenta Hashizume

    2021.12 

     More details

  • On effectivity of Iitaka fibrations for lc pairs with a polarization Invited

    Kenta Hashizume

    2021.10 

     More details

  • Adjunction and inversion of adjunction Invited

    Kenta Hashizume

    Seminar of Algebraic Geometry in East Asia  2021.9 

     More details

  • Non-vanishing theorem for generalized log canonical pairs with a polarization Invited

    2021.8 

     More details

  • Crepant semi-divisorial log terminal model Invited

    2021.7 

     More details

  • Minimal model program for semi-log canonical pairs and partial resolutions Invited

    2021.4 

     More details

  • Relations between two log minimal models of log canonical pairs Invited

    2020.10 

     More details

  • Relations between two log minimal models of log canonical pairs Invited

    2020.9 

     More details

  • A relation between log MMP and property of being log abundant for lc pairs Invited

    2020.7 

     More details

  • On minimal model theory for log canonical pairs Invited

    2020.7 

     More details

  • On minimal model theory for log canonical pairs with big boundary divisors Invited

    2020.1 

     More details

  • On minimal model theory for log canonical pairs with big boundary divisors Invited

    2019.11 

     More details

  • On minimal model theory for log canonical pairs with big boundary divisors Invited

    2019.5 

     More details

  • On existence of small lc modification and log canonicalization for normal varieties Invited

    2019.1 

     More details

  • A class of singularity of arbitrary pairs and log canonicalizations Invited

    2018.11 

     More details

  • A class of singularity of arbitrary pairs and log canonicalizations Invited

    2018.8 

     More details

  • A class of singularity of arbitrary pairs and log canonicalizations Invited

    2018.5 

     More details

  • Minimal model program for log canonical threefolds in positive characteristic, Invited

    2018.2 

     More details

  • On the non-vanishing conjecture and existence of log minimal models Invited

    2017.10 

     More details

  • Minimal model program for relatively trivial log canonical pairs Invited

    2017.1 

     More details

  • Introduction to the minimal model theory

    Kenta Hashizume

    East Asian core Doctoral Forum on Mathematics 2017  2017.1 

     More details

    Language:English  

    researchmap

  • Minimal model theory for relatively trivial log canonical pairs Invited

    2016.11 

     More details

  • Finite generation of adjoint ring for log surfaces Invited

    2016.5 

     More details

▶ display all

Awards

  • The MSJ Takebe Katahiro Encouragement Prize

    2019.9   The Mathematical Society of Japan   A new approach to the minimal model program

     More details

Research Projects

  • Number theory and algebraic geometry and computer mathematics - New developments on rationality problems for algebraic varieties -

    Grant number:24K00519

    2024.4 - 2027.3

    System name:Grants-in-Aid for Scientific Research

    Research category:Grant-in-Aid for Scientific Research (B)

    Awarding organization:Japan Society for the Promotion of Science

      More details

    Grant amount:\9230000 ( Direct Cost: \7100000 、 Indirect Cost:\2130000 )

    researchmap

  • Minimal model theory and its applications

    Grant number:22K13887

    2022.4 - 2025.3

    System name:Grants-in-Aid for Scientific Research Grant-in-Aid for Early-Career Scientists

    Research category:Grant-in-Aid for Early-Career Scientists

    Awarding organization:Japan Society for the Promotion of Science

      More details

    Grant amount:\1950000 ( Direct Cost: \1500000 、 Indirect Cost:\450000 )

    researchmap

  • 高次元代数多様体の双有理幾何学

    Grant number:23K20787

    2021.4 - 2026.3

    System name:科学研究費助成事業

    Research category:基盤研究(B)

    Awarding organization:日本学術振興会

    藤野 修, 橋詰 健太(2025年度のみ)

      More details

    Authorship:Coinvestigator(s) 

    Grant amount:\17160000 ( Direct Cost: \13200000 、 Indirect Cost:\3960000 )

    2022年度は極小モデル理論の解析化の研究を推進した。極小モデル理論は本来射影多様体に対する理論である。特異点論への応用や代数多様体の退化の研究のためには、極小モデル理論を複素解析空間の間の射影射に一般化することは不可欠である。穏やかな特異点をもった多様体に対しては、Birkar--Cascini--Hacon--McKernanによる大論文(BCHMと略されることが多い)で、極小モデル理論の多くの部分が完成している。私はすでにBCHMを複素解析空間の間の射影射に一般化することに成功している。この一般化は2021年度の後半に研究し、プレプリントは公表済みである。極小モデル理論の基本定理たちは非常に悪い特異点を持った対象にまで一般化されている。これは私が長い年月をかけて確立した話である。2022年度はこの私の過去の一連の仕事を複素解析空間の間の射影射に一般化することに全エネルギーを注ぎ込んだ。概ね満足できる結果を得ることができ、結果は複数のプレプリントとして公表済みである。また、この研究のために必要となった消滅定理を理解するために藤澤太郎氏(東京電機大学)と混合ホッジ構造の変動の理論も研究した。いずれにせよ、非常に成果の上がった一年であった。ただ、世界の流行と無関係に他の人が避けるようなハードな部分を扱った仕事であり、Top10%論文には絶対にならないプレプリントばかりだと思う。さらにコロナ禍で引きこもり生活での研究であり、ほぼ全て単著論文である。国際共著論文や国際共同研究はないので、やはり高く評価されないのではないか?と思う。

    researchmap

  • The minimal model theory for higher-dimensional algebraic varieties and singularity theory

    Grant number:19J00046

    2019.4 - 2022.3

    System name:Grants-in-Aid for Scientific Research Grant-in-Aid for JSPS Fellows

    Research category:Grant-in-Aid for JSPS Fellows

    Awarding organization:Japan Society for the Promotion of Science

      More details

    Grant amount:\4030000 ( Direct Cost: \3100000 、 Indirect Cost:\930000 )

    researchmap

  • 極小モデル理論と随伴環の有限生成性

    Grant number:16J05875

    2016.4 - 2019.3

    System name:科学研究費助成事業 特別研究員奨励費

    Research category:特別研究員奨励費

    Awarding organization:日本学術振興会

    橋詰 健太

      More details

    Grant amount:\1900000 ( Direct Cost: \1900000 )

    今年度は擬対数的標準対という新しい特異点のクラスを定義し、これについての研究を主に行った。このクラスは、極小モデル理論が議論できる最も大きい枠組みである対数的標準対のクラスよりもさらに大きいもので、一般的には極小モデル理論は擬対数的標準対の枠組みで議論できない。だが擬対数的標準対のクラスは双有理幾何学で考えられる主要なクラスたちを多く含み、重要な対象であると考えている。今年度の研究により、擬対数的標準対は対数的標準対と似た性質を多く持つことが分かった。これは「擬対数的標準対に小さな双有理変形を施すことができ対数的標準対にできる」という結果から導かれるものである。また、任意の多様体と境界因子の対に関する対数的標準化という双有理変形も証明した。対数的標準化は、一般の特異点解消を用いた双有理変形と比べて、例外因子と呼ばれるものが特殊な性質を持つように構成される。この性質を用いて、全ての多様体と境界因子の対について、非対数的標準軌跡と呼ばれる悪い特異点の集合の特徴付けに成功した。これらの定理は、極小モデル理論への応用はまだ見つかっていないが、偏極自己準同型射を持つ射影多様体に応用が見つかっている。
    また、ログ飯高予想の特別な場合についての解決も行った。飯高予想と呼ばれる予想は滑らかな射影多様体についてのものだが、極小モデル理論の観点や射影的でない多様体についての飯高予想を考えるとログ飯高予想と呼ばれる予想が自然に表れる。この予想を、一般ファイバーについての極小モデル理論を仮定した場合に証明した。

    researchmap

 

Teaching Experience (researchmap)

  • Fundamentals of Mathematics A2

    2025.6
    -
    2025.7

     More details

  • Basic Practice on Mathematics b

    2025.6
    -
    2025.7

     More details

  • Algebraic Varieties

    2025.4
    -
    2025.7

     More details

  • Fundamentals of Mathematics A1

    2025.4
    -
    2025.5

     More details

  • Basic Practice on Mathematics a

    2025.4
    -
    2025.5

     More details

  • Mathematics Exercise B

    2024.12
    -
    2025.2

     More details

  • Fundamentals of Mathematics B2

    2024.12
    -
    2025.2

     More details

  • Mathematics Exercise A

    2024.10
    -
    2024.11

     More details

  • Fundamentals of Mathematics B1

    2024.10
    -
    2024.11

     More details

  • Basic Practice on Mathematics b

    2024.6
    -
    2024.7

     More details

  • Fundamentals of Mathematics A2

    2024.6
    -
    2024.7

     More details

  • Algebraic Varieties

    2024.4
    -
    2024.7

     More details

  • Fundamentals of Mathematics A1

    2024.4
    -
    2024.5

     More details

  • Basic Practice on Mathematics a

    2024.4
    -
    2024.5

     More details

  • Fundamentals of Mathematics B2

    2023.12
    -
    2024.2

     More details

  • Mathematics Exercise B

    2023.12
    -
    2024.2

     More details

  • Fundamentals of Mathematics B1

    2023.10
    -
    2023.11

     More details

  • Mathematics Exercise A

    2023.10
    -
    2023.11

     More details

  • Basic Practice on Mathematics b

    2023.6
    -
    2023.7

     More details

  • Algebraic Varieties

    2023.4
    -
    2023.7

     More details

  • Basic Practice on Mathematics a

    2023.4
    -
    2023.5

     More details

  • Linear Algebra with Exercises B

    2022.10
    -
    2023.1

     More details

  • 数理科学の最前線Ⅱ

    2022.10

     More details

  • Linear Algebra with Exercises A

    2022.4
    -
    2022.7

     More details

▶ display all

Teaching Experience

  • 学問の扉 知と方法の最前線

    2024
    Institution name:新潟大学

  • 数学基礎A2

    2024
    Institution name:新潟大学

  • 理学スタディ・スキルズ

    2024
    Institution name:新潟大学

  • 数学基礎A1

    2024
    Institution name:新潟大学

  • 数学基礎演習a

    2023
    Institution name:新潟大学

  • 数学基礎B2

    2023
    Institution name:新潟大学

  • 数学基礎B1

    2023
    Institution name:新潟大学

  • 数学基礎演習b

    2023
    Institution name:新潟大学

  • 高次元代数多様体論

    2023
    Institution name:新潟大学

  • 代数多様体論

    2023
    Institution name:新潟大学

  • 数学演習B

    2023
    Institution name:新潟大学

  • 数学演習A

    2023
    Institution name:新潟大学

  • 数学講究

    2023
    Institution name:新潟大学

▶ display all