Graduate School of Science and Technology Fundamental Sciences Assistant Professor
Faculty of Science Department of Science Assistant Professor
Updated on 2025/01/15
博士(理学) ( 2017.11 京都大学 )
Minimal model theory
Birational geometry
Natural Science / Algebra
Institute for Research Administration, Niigata University
2023.4
Department of Mathematics, Faculty of Science, Niigata University Assistant Professor
2023.4
Center for the Promotion of Interdisciplinary Education and Research, Kyoto University
2021.12 - 2023.3
Country:Japan
Graduate School of Mathematical Sciences, The University of Tokyo
2019.4 - 2021.11
Country:Japan
Department of Mathematics, Graduate School of Science, Kyoto University
2017.12 - 2019.3
Country:Japan
Department of Mathematics, Graduate School of Science, Kyoto University
2016.4 - 2017.11
Country:Japan
Niigata University Fundamental Sciences, Graduate School of Science and Technology Assistant Professor
2023.4
Niigata University Department of Science, Faculty of Science Assistant Professor
2023.4
Niigata University Fundamental Sciences, Institute of Science and Technology, Academic Assembly Assistant Professor
2023.4
Kyoto University Graduate School of Science Department of Mathematics
2016.4 - 2017.11
Notes: 博士課程
Kyoto University Graduate School of Science Department of Mathematics
2014.4 - 2016.3
Notes: 修士課程
Department of Science, Faculty of Science, Kyoto University
2010.4 - 2014.3
The Mathematical Society of Japan
2018.4
ADJUNCTION AND INVERSION OF ADJUNCTION Reviewed
OSAMU FUJINO, KENTA HASHIZUME
Nagoya Mathematical Journal 249 119 - 147 2023.3
Existence of log canonical modifications and its applications Reviewed
Osamu Fujino, Kenta Hashizume
European Journal of Mathematics 9 ( 1 ) 2023.2
Iitaka fibrations for dlt pairs polarized by a nef and log big divisor Reviewed
Kenta Hashizume
Forum of Mathematics, Sigma 10 2022.10
Non-vanishing theorem for generalized log canonical pairs with a polarization Reviewed
Kenta Hashizume
Selecta Mathematica 28 ( 4 ) 2022.9
On inversion of adjunction Reviewed
Osamu Fujino, Kenta Hashizume
Proceedings of the Japan Academy, Series A, Mathematical Sciences 98 ( 2 ) 13 - 18 2022.2
Crepant semi-divisorial log terminal model Reviewed
Kenta Hashizume
Épijournal de Géométrie Algébrique Volume 5 2021.12
Minimal model program for log canonical threefolds in positive characteristic Reviewed
Kenta Hashizume, Yusuke Nakamura, Hiromu Tanaka
Mathematical Research Letters 27 ( 4 ) 1003 - 1054 2020.12
Log Iitaka conjecture for abundant log canonical fibrations Reviewed
Kenta Hashizume
Proceedings of the Japan Academy, Series A, Mathematical Sciences 96 ( 10 ) 87 - 92 2020.12
Relations between two log minimal models of log canonical pairs Reviewed
Kenta Hashizume
International Journal of Mathematics 31 ( 13 ) 2050103 - 2050103 2020.10
A class of singularity of arbitrary pairs and log canonicalizations Reviewed
Kenta Hashizume
Asian Journal of Mathematics 24 ( 2 ) 207 - 238 2020.9
On minimal model theory for log abundant lc pairs Reviewed
Kenta Hashizume, Zheng-Yu Hu
Journal für die reine und angewandte Mathematik (Crelles Journal) 2020 ( 767 ) 109 - 159 2019.11
Non-vanishing theorem for $\mathrm{lc}$ pairs admitting a Calabi–Yau pair Reviewed
Kenta Hashizume
Mathematical Research Letters 26 ( 4 ) 1097 - 1113 2019
Minimal model theory for relatively trivial log canonical pairs Reviewed
Kenta Hashizume
Annales de l’institut Fourier 68 ( 5 ) 2069 - 2107 2018.11
Remarks on special kinds of the relative log minimal model program Reviewed
Kenta Hashizume
manuscripta mathematica 160 ( 3-4 ) 285 - 314 2018.11
On the Non-vanishing Conjecture and Existence of Log Minimal Models Reviewed
Kenta Hashizume
Publications of the Research Institute for Mathematical Sciences 54 ( 1 ) 89 - 104 2018.1
Remarks on the abundance conjecture Reviewed
Kenta Hashizume
Proceedings of the Japan Academy, Series A, Mathematical Sciences 92 ( 9 ) 101 - 106 2016.11
Finite generation of adjoint ring for log surfaces Reviewed
Kenta Hashizume
Journal of Mathematical Sciences, the University of Tokyo 23 ( 4 ) 741 - 761 2016.10
Minimal model theory for log canonical pairs and log canonical loci Invited
Kenta Hashizume
Yufuin Algebraic Geometry Workshop 2023.12
On effective base point freeness for klt pairs Invited
2023.3
On effective base point freeness for klt pairs Invited
2023.2
On lc-trivial fibrations with log big moduli parts Invited
2022.9
On log MMP for log canonical pairs of log general type Invited
Kenta Hashizume
The hybrid 19th Affine Algebraic Geometry Meeting 2021.3
Minimal Model Theory for Log Canonical Pairs and Log Canonical Loci Invited
Kenta Hashizume
NCTS Seminar in Algebraic Geometry 2023.11
Birational geometry and minimal model theory Invited
Kenta Hashizume
Catch-all Mathematical Colloquium of Japan 2023.10
log abundant条件と極小モデル理論 Invited
橋詰 健太
新潟代数セミナー 2023.5
対数的標準対の極小モデル理論 Invited
橋詰 健太
新潟代数セミナー 2023.5
高次元代数多様体と双有理幾何学 Invited
橋詰 健太
新潟代数セミナー 2023.4
極小モデル理論と対数的対 Invited
橋詰 健太
新潟代数セミナー 2023.4
On effectivity of Iitaka fibrations for lc pairs with a polarization Invited
Kenta Hashizume
2021.12
On effectivity of Iitaka fibrations for lc pairs with a polarization Invited
Kenta Hashizume
2021.10
Adjunction and inversion of adjunction Invited
Kenta Hashizume
Seminar of Algebraic Geometry in East Asia 2021.9
Non-vanishing theorem for generalized log canonical pairs with a polarization Invited
2021.8
Crepant semi-divisorial log terminal model Invited
2021.7
Minimal model program for semi-log canonical pairs and partial resolutions Invited
2021.4
Relations between two log minimal models of log canonical pairs Invited
2020.10
Relations between two log minimal models of log canonical pairs Invited
2020.9
A relation between log MMP and property of being log abundant for lc pairs Invited
2020.7
On minimal model theory for log canonical pairs Invited
2020.7
On minimal model theory for log canonical pairs with big boundary divisors Invited
2020.1
On minimal model theory for log canonical pairs with big boundary divisors Invited
2019.11
On minimal model theory for log canonical pairs with big boundary divisors Invited
2019.5
On existence of small lc modification and log canonicalization for normal varieties Invited
2019.1
A class of singularity of arbitrary pairs and log canonicalizations Invited
2018.11
A class of singularity of arbitrary pairs and log canonicalizations Invited
2018.8
A class of singularity of arbitrary pairs and log canonicalizations Invited
2018.5
Minimal model program for log canonical threefolds in positive characteristic, Invited
2018.2
On the non-vanishing conjecture and existence of log minimal models Invited
2017.10
Minimal model program for relatively trivial log canonical pairs Invited
2017.1
Introduction to the minimal model theory
Kenta Hashizume
East Asian core Doctoral Forum on Mathematics 2017 2017.1
Minimal model theory for relatively trivial log canonical pairs Invited
2016.11
Finite generation of adjoint ring for log surfaces Invited
2016.5
The MSJ Takebe Katahiro Encouragement Prize
2019.9 The Mathematical Society of Japan A new approach to the minimal model program
Minimal model theory and its applications
Grant number:22K13887
2022.4 - 2025.3
System name:Grants-in-Aid for Scientific Research Grant-in-Aid for Early-Career Scientists
Research category:Grant-in-Aid for Early-Career Scientists
Awarding organization:Japan Society for the Promotion of Science
Grant amount:\1950000 ( Direct Cost: \1500000 、 Indirect Cost:\450000 )
The minimal model theory for higher-dimensional algebraic varieties and singularity theory
Grant number:19J00046
2019.4 - 2022.3
System name:Grants-in-Aid for Scientific Research Grant-in-Aid for JSPS Fellows
Research category:Grant-in-Aid for JSPS Fellows
Awarding organization:Japan Society for the Promotion of Science
Grant amount:\4030000 ( Direct Cost: \3100000 、 Indirect Cost:\930000 )
極小モデル理論と随伴環の有限生成性
Grant number:16J05875
2016.4 - 2019.3
System name:科学研究費助成事業 特別研究員奨励費
Research category:特別研究員奨励費
Awarding organization:日本学術振興会
橋詰 健太
Grant amount:\1900000 ( Direct Cost: \1900000 )
今年度は擬対数的標準対という新しい特異点のクラスを定義し、これについての研究を主に行った。このクラスは、極小モデル理論が議論できる最も大きい枠組みである対数的標準対のクラスよりもさらに大きいもので、一般的には極小モデル理論は擬対数的標準対の枠組みで議論できない。だが擬対数的標準対のクラスは双有理幾何学で考えられる主要なクラスたちを多く含み、重要な対象であると考えている。今年度の研究により、擬対数的標準対は対数的標準対と似た性質を多く持つことが分かった。これは「擬対数的標準対に小さな双有理変形を施すことができ対数的標準対にできる」という結果から導かれるものである。また、任意の多様体と境界因子の対に関する対数的標準化という双有理変形も証明した。対数的標準化は、一般の特異点解消を用いた双有理変形と比べて、例外因子と呼ばれるものが特殊な性質を持つように構成される。この性質を用いて、全ての多様体と境界因子の対について、非対数的標準軌跡と呼ばれる悪い特異点の集合の特徴付けに成功した。これらの定理は、極小モデル理論への応用はまだ見つかっていないが、偏極自己準同型射を持つ射影多様体に応用が見つかっている。
また、ログ飯高予想の特別な場合についての解決も行った。飯高予想と呼ばれる予想は滑らかな射影多様体についてのものだが、極小モデル理論の観点や射影的でない多様体についての飯高予想を考えるとログ飯高予想と呼ばれる予想が自然に表れる。この予想を、一般ファイバーについての極小モデル理論を仮定した場合に証明した。
Fundamentals of Mathematics B2
Mathematics Exercise B
Fundamentals of Mathematics B1
Mathematics Exercise A
Algebraic Varieties
Basic Practice on Mathematics a
Linear Algebra with Exercises B
数理科学の最前線Ⅱ
Linear Algebra with Exercises A
学問の扉 知と方法の最前線
数学基礎A2
理学スタディ・スキルズ
数学基礎A1
高次元代数多様体論
代数多様体論
数学演習B
数学演習A
数学基礎演習b
数学基礎演習a
数学基礎B2
数学基礎B1
数学講究