Updated on 2024/06/22

写真a

 
HASHIZUME Kenta
 
Organization
Academic Assembly Institute of Science and Technology Fundamental Sciences Assistant Professor
Graduate School of Science and Technology Fundamental Sciences Assistant Professor
Faculty of Science Department of Science Assistant Professor
Title
Assistant Professor
External link

Degree

  • 博士(理学) ( 2017.11   京都大学 )

Research Interests

  • Minimal model theory

  • Birational geometry

Research Areas

  • Natural Science / Algebra

Research History (researchmap)

  • Institute for Research Administration, Niigata University

    2023.4

      More details

  • Department of Mathematics, Faculty of Science, Niigata University   Assistant Professor

    2023.4

      More details

  • Center for the Promotion of Interdisciplinary Education and Research, Kyoto University

    2021.12 - 2023.3

      More details

    Country:Japan

    researchmap

  • Graduate School of Mathematical Sciences, The University of Tokyo

    2019.4 - 2021.11

      More details

    Country:Japan

    researchmap

  • Department of Mathematics, Graduate School of Science, Kyoto University

    2017.12 - 2019.3

      More details

    Country:Japan

    researchmap

  • Department of Mathematics, Graduate School of Science, Kyoto University

    2016.4 - 2017.11

      More details

    Country:Japan

    researchmap

▶ display all

Research History

  • Niigata University   Fundamental Sciences, Graduate School of Science and Technology   Assistant Professor

    2023.4

  • Niigata University   Department of Science, Faculty of Science   Assistant Professor

    2023.4

  • Niigata University   Fundamental Sciences, Institute of Science and Technology, Academic Assembly   Assistant Professor

    2023.4

Education

  • Kyoto University   Graduate School of Science   Department of Mathematics

    2016.4 - 2017.11

      More details

    Notes: 博士課程

    researchmap

  • Kyoto University   Graduate School of Science   Department of Mathematics

    2014.4 - 2016.3

      More details

    Notes: 修士課程

    researchmap

  • Department of Science, Faculty of Science, Kyoto University

    2010.4 - 2014.3

      More details

Professional Memberships

  • The Mathematical Society of Japan

    2018.4

      More details

 

Papers

▶ display all

Presentations

  • Minimal model theory for log canonical pairs and log canonical loci Invited

    Kenta Hashizume

    Yufuin Algebraic Geometry Workshop  2023.12 

     More details

    Event date: 2023.12

    researchmap

  • On effective base point freeness for klt pairs Invited

    2023.3 

     More details

    Event date: 2023.3

    researchmap

  • On effective base point freeness for klt pairs Invited

    2023.2 

     More details

    Event date: 2023.2

    researchmap

  • On lc-trivial fibrations with log big moduli parts Invited

    2022.9 

     More details

    Event date: 2022.8 - 2022.9

    researchmap

  • On log MMP for log canonical pairs of log general type Invited

    Kenta Hashizume

    The hybrid 19th Affine Algebraic Geometry Meeting  2021.3 

     More details

    Event date: 2021.3

    researchmap

  • Minimal Model Theory for Log Canonical Pairs and Log Canonical Loci Invited

    Kenta Hashizume

    NCTS Seminar in Algebraic Geometry  2023.11 

     More details

  • Birational geometry and minimal model theory Invited

    Kenta Hashizume

    Catch-all Mathematical Colloquium of Japan  2023.10 

     More details

  • log abundant条件と極小モデル理論 Invited

    橋詰 健太

    新潟代数セミナー  2023.5 

     More details

  • 対数的標準対の極小モデル理論 Invited

    橋詰 健太

    新潟代数セミナー  2023.5 

     More details

  • 高次元代数多様体と双有理幾何学 Invited

    橋詰 健太

    新潟代数セミナー  2023.4 

     More details

  • 極小モデル理論と対数的対 Invited

    橋詰 健太

    新潟代数セミナー  2023.4 

     More details

  • On effectivity of Iitaka fibrations for lc pairs with a polarization Invited

    Kenta Hashizume

    2021.12 

     More details

  • On effectivity of Iitaka fibrations for lc pairs with a polarization Invited

    Kenta Hashizume

    2021.10 

     More details

  • Adjunction and inversion of adjunction Invited

    Kenta Hashizume

    Seminar of Algebraic Geometry in East Asia  2021.9 

     More details

  • Non-vanishing theorem for generalized log canonical pairs with a polarization Invited

    2021.8 

     More details

  • Crepant semi-divisorial log terminal model Invited

    2021.7 

     More details

  • Minimal model program for semi-log canonical pairs and partial resolutions Invited

    2021.4 

     More details

  • Relations between two log minimal models of log canonical pairs Invited

    2020.10 

     More details

  • Relations between two log minimal models of log canonical pairs Invited

    2020.9 

     More details

  • A relation between log MMP and property of being log abundant for lc pairs Invited

    2020.7 

     More details

  • On minimal model theory for log canonical pairs Invited

    2020.7 

     More details

  • On minimal model theory for log canonical pairs with big boundary divisors Invited

    2020.1 

     More details

  • On minimal model theory for log canonical pairs with big boundary divisors Invited

    2019.11 

     More details

  • On minimal model theory for log canonical pairs with big boundary divisors Invited

    2019.5 

     More details

  • On existence of small lc modification and log canonicalization for normal varieties Invited

    2019.1 

     More details

  • A class of singularity of arbitrary pairs and log canonicalizations Invited

    2018.11 

     More details

  • A class of singularity of arbitrary pairs and log canonicalizations Invited

    2018.8 

     More details

  • A class of singularity of arbitrary pairs and log canonicalizations Invited

    2018.5 

     More details

  • Minimal model program for log canonical threefolds in positive characteristic, Invited

    2018.2 

     More details

  • On the non-vanishing conjecture and existence of log minimal models Invited

    2017.10 

     More details

  • Minimal model program for relatively trivial log canonical pairs Invited

    2017.1 

     More details

  • Introduction to the minimal model theory

    Kenta Hashizume

    East Asian core Doctoral Forum on Mathematics 2017  2017.1 

     More details

    Language:English  

    researchmap

  • Minimal model theory for relatively trivial log canonical pairs Invited

    2016.11 

     More details

  • Finite generation of adjoint ring for log surfaces Invited

    2016.5 

     More details

▶ display all

Awards

  • The MSJ Takebe Katahiro Encouragement Prize

    2019.9   The Mathematical Society of Japan   A new approach to the minimal model program

     More details

Research Projects

  • Minimal model theory and its applications

    Grant number:22K13887

    2022.4 - 2025.3

    System name:Grants-in-Aid for Scientific Research Grant-in-Aid for Early-Career Scientists

    Research category:Grant-in-Aid for Early-Career Scientists

    Awarding organization:Japan Society for the Promotion of Science

      More details

    Grant amount:\1950000 ( Direct Cost: \1500000 、 Indirect Cost:\450000 )

    researchmap

  • The minimal model theory for higher-dimensional algebraic varieties and singularity theory

    Grant number:19J00046

    2019.4 - 2022.3

    System name:Grants-in-Aid for Scientific Research Grant-in-Aid for JSPS Fellows

    Research category:Grant-in-Aid for JSPS Fellows

    Awarding organization:Japan Society for the Promotion of Science

      More details

    Grant amount:\4030000 ( Direct Cost: \3100000 、 Indirect Cost:\930000 )

    researchmap

  • 極小モデル理論と随伴環の有限生成性

    Grant number:16J05875

    2016.4 - 2019.3

    System name:科学研究費助成事業 特別研究員奨励費

    Research category:特別研究員奨励費

    Awarding organization:日本学術振興会

    橋詰 健太

      More details

    Grant amount:\1900000 ( Direct Cost: \1900000 )

    今年度は擬対数的標準対という新しい特異点のクラスを定義し、これについての研究を主に行った。このクラスは、極小モデル理論が議論できる最も大きい枠組みである対数的標準対のクラスよりもさらに大きいもので、一般的には極小モデル理論は擬対数的標準対の枠組みで議論できない。だが擬対数的標準対のクラスは双有理幾何学で考えられる主要なクラスたちを多く含み、重要な対象であると考えている。今年度の研究により、擬対数的標準対は対数的標準対と似た性質を多く持つことが分かった。これは「擬対数的標準対に小さな双有理変形を施すことができ対数的標準対にできる」という結果から導かれるものである。また、任意の多様体と境界因子の対に関する対数的標準化という双有理変形も証明した。対数的標準化は、一般の特異点解消を用いた双有理変形と比べて、例外因子と呼ばれるものが特殊な性質を持つように構成される。この性質を用いて、全ての多様体と境界因子の対について、非対数的標準軌跡と呼ばれる悪い特異点の集合の特徴付けに成功した。これらの定理は、極小モデル理論への応用はまだ見つかっていないが、偏極自己準同型射を持つ射影多様体に応用が見つかっている。
    また、ログ飯高予想の特別な場合についての解決も行った。飯高予想と呼ばれる予想は滑らかな射影多様体についてのものだが、極小モデル理論の観点や射影的でない多様体についての飯高予想を考えるとログ飯高予想と呼ばれる予想が自然に表れる。この予想を、一般ファイバーについての極小モデル理論を仮定した場合に証明した。

    researchmap

 

Teaching Experience (researchmap)

  • Fundamentals of Mathematics B2

    2023.12
    -
    2024.2

     More details

  • Mathematics Exercise B

    2023.12
    -
    2024.2

     More details

  • Fundamentals of Mathematics B1

    2023.10
    -
    2023.11

     More details

  • Mathematics Exercise A

    2023.10
    -
    2023.11

     More details

  • Algebraic Varieties

    2023.4
    -
    2023.7

     More details

  • Basic Practice on Mathematics a

    2023.4
    -
    2023.5

     More details

  • Linear Algebra with Exercises B

    2022.10
    -
    2023.1

     More details

  • 数理科学の最前線Ⅱ

    2022.10

     More details

  • Linear Algebra with Exercises A

    2022.4
    -
    2022.7

     More details

▶ display all

Teaching Experience

  • 高次元代数多様体論

    2023
    Institution name:新潟大学

  • 代数多様体論

    2023
    Institution name:新潟大学

  • 数学演習B

    2023
    Institution name:新潟大学

  • 数学演習A

    2023
    Institution name:新潟大学

  • 数学基礎演習b

    2023
    Institution name:新潟大学

  • 数学基礎演習a

    2023
    Institution name:新潟大学

  • 数学基礎B2

    2023
    Institution name:新潟大学

  • 数学基礎B1

    2023
    Institution name:新潟大学

  • 数学講究

    2023
    Institution name:新潟大学

▶ display all