Updated on 2024/12/02

写真a

 
WATANABE Keiichi
 
Organization
Academic Assembly Institute of Science and Technology Fundamental Sciences Professor
Graduate School of Science and Technology Professor
Faculty of Science Professor
Title
Professor
External link

Degree

  • 博士(理学) ( 1994.3   北海道大学 )

Research Interests

  • operator theory

  • functional analysis

  • 作用素論

  • 関数解析

  • gyrovector spaces

  • gyrovector space

Research Areas

  • Natural Science / Basic analysis

Research History

  • Niigata University   Graduate School of Science and Technology   Professor

    2015.4

  • Niigata University   Faculty of Science   Professor

    2015.4

  • Niigata University   Graduate School of Science and Technology   Associate Professor

    1995.4 - 2015.3

  • Niigata University   Faculty of Science   Associate Professor

    1994.9 - 2015.3

  • Niigata University   Faculty of Science   Research Assistant

    1988.5 - 1994.8

Education

  • Niigata University   理学研究科   数学

    - 1988

      More details

    Country: Japan

    researchmap

  • Niigata University   Graduate School, Division of Natural Science

    - 1988

      More details

  • Kyoto University   Faculty of Science   数学

    - 1986

      More details

    Country: Japan

    researchmap

  • Kyoto University   Faculty of Science

    - 1986

      More details

Professional Memberships

Committee Memberships

  • 日本数学会   函数解析学分科会評議員  

    2022 - 2023   

      More details

  • 日本数学会   函数解析学分科会委員  

    2019 - 2020   

      More details

 

Papers

▶ display all

Research Projects

  • ジャイロベクトル空間の関数解析的研究

    Grant number:21K03288

    2021.4 - 2026.3

    System name:科学研究費助成事業 基盤研究(C)

    Research category:基盤研究(C)

    Awarding organization:日本学術振興会

    渡邉 恵一

      More details

    Grant amount:\4030000 ( Direct Cost: \3100000 、 Indirect Cost:\930000 )

    実ヒルベルト空間の原点を中心とする開球は,メビウスの和とメビウスのスカラー倍によってジャイロベクトル空間の構造をもつ。この空間においては,有限生成のジャイロベクトル部分空間は同じ元で生成される線形部分空間と開球の共通部分に一致すること,位相的に相対閉なジャイロベクトル部分空間の閉線形包に関する直交分解を補正すると直交ジャイロ分解が一意的に得られること,任意の元がポアンカレの距離で収束する直交ジャイロ展開をもつこと,ジャイロ展開係数を求める具体的な手続き等々が知られていて,これはヒルベルト空間の正規直交基底に関するフーリエ式直交展開のジャイロ理論における対応物となっている。これをさらに推し進めて,2元それぞれの直交ジャイロ展開係数による2元のポアンカレの距離の評価について解明する。また,2乗総和可能な数列が,ヒルベルト空間上の有界線形汎関数に対応するメビウスジャイロベクトル空間上の(線形と限らない)汎関数の最も基本的なクラスを誘導するという,Rieszの定理の対応物が知られている。この方法を推し進め,土台のヒルベルト空間の正規直交基底の組とそれらの間の有界線形作用素の表現行列を用いて,メビウスジャイロベクトル空間の間のquasi gyrolinearとよばれるジャイロ線形性に準じた性質をもつ写像が自然に誘導され,このクラスの写像について,ヒルベルト空間の間の有界線形作用素論の対応物を建設することが当面の目的のひとつである。そのため,ヒルベルト空間の間の縮小線形作用素の制限がメビウスの演算と距離に関してLipschitz連続であるかどうかが最初の重要な問題であったが,これを解明した論文が2021年10月に出版された。

    researchmap

  • A study of geometric structure of Banach spaces and its applications

    Grant number:15K04920

    2015.4 - 2019.3

    System name:Grants-in-Aid for Scientific Research

    Research category:Grant-in-Aid for Scientific Research (C)

    Awarding organization:Japan Society for the Promotion of Science

    SAITO KICHI-SUKE

      More details

    Grant amount:\4810000 ( Direct Cost: \3700000 、 Indirect Cost:\1110000 )

    In the study of geometry of Banach spaces, two notions of orthogonality and geometric constant are important. First, we sucessed to characterize 2 dimensional Banach spaces with James constant √2. We published three papers (Math Nach, Mediter J Math, Math Inequal Appl) about this results. In the study of symmetry of Banach spaces, we studied the symmetric points of von Neumann algebras and so on. In particular, we characterized symmetric 2-dimmensional Banach spaces using generalized Day-James spaces.

    researchmap

  • Research on Jordan type model theory of weighted composition operators on Hilbert spaces

    Grant number:23540190

    2011.4 - 2016.3

    System name:Grants-in-Aid for Scientific Research

    Research category:Grant-in-Aid for Scientific Research (C)

    Awarding organization:Japan Society for the Promotion of Science

    Watanabe Keiichi, IZUCHI Keiji, SAITO Kichi-Suke, HATORI Osamu

      More details

    Grant amount:\4680000 ( Direct Cost: \3600000 、 Indirect Cost:\1080000 )

    It was the purpose of this project to construct a theory for continuous weighted composition operators on countably infinite dimensional Hilbert spaces corresponding to Jordan normal form of square matrices. While carrying out this project, we recognized relations with order preserving operator inequalities, nonassociative algebras and hyperbolic geometry. We gave some extensions of operator inequalities of Furuta type, and discovered and proved functional inequalities between certain kind of polynomials by applying matrix inequalities. Furthermore, we gave an elementary proof by hand calculation of that the balls in arbitrary real inner product spaces are not only gyrocommutative gyrogroup but also enjoying structure of gyrovector spaces, and it shows possibility of research by elementary approach of this subject.

    researchmap

  • Various constants and norm inequalities in Banach spaces and its applications

    Grant number:23540189

    2011 - 2013

    System name:Grants-in-Aid for Scientific Research

    Research category:Grant-in-Aid for Scientific Research (C)

    Awarding organization:Japan Society for the Promotion of Science

    SAITO Kichisuke, KATO Mikio, HATORI Osamu, MITANI Ken-ichi, WATANABE Keiichi

      More details

    Grant amount:\4940000 ( Direct Cost: \3800000 、 Indirect Cost:\1140000 )

    In this project, we mainly presented the following results.
    (1) We presented how to calculate several geometrical constants of Banach spaces, in particular, two dimensiona spaces, for example, von Neumann-Jordan constant, James constant and so on.(2) We studied the orthogonal structure of finite dimensional Banach spaces using the notion of Birkoff orthogonality.(3) We proved the refinement and generalization of trianglar inequalities in Banach spaces and considered its applications.

    researchmap

  • Study on preserver problems on Banach alebras

    Grant number:22540178

    2010 - 2012

    System name:Grants-in-Aid for Scientific Research

    Research category:Grant-in-Aid for Scientific Research (C)

    Awarding organization:Japan Society for the Promotion of Science

    HATORI Osamu, MIURA Takeshi, TAKAGI Hiroyuki, IZUCHI Keiji, SAITO Kichisuke, WATANABE Keiichi

      More details

    Grant amount:\4160000 ( Direct Cost: \3200000 、 Indirect Cost:\960000 )

    We give a structure theorem for isometries between the general linear groups of Banach algebras. As an application of it, we deduce the form of isometries between the general linear group of C*-algebras. We get a non-commutative Mazur-Ulam theorem and we describe the form of isometries between the full unitary group of a Hilbert space. We also get a result on the maps between certain commutative Banach algebras which preserve the norm non-symmetrically. We describe the form of the multiplicative isometries between F-algebras of holomorphic functions.

    researchmap

  • The study of norm structure and various constants of Banach spaces, and its applications

    Grant number:20540158

    2008 - 2010

    System name:Grants-in-Aid for Scientific Research

    Research category:Grant-in-Aid for Scientific Research (C)

    Awarding organization:Japan Society for the Promotion of Science

    SAITO Kichi-Suke, KATO Mikio, HATORI Osamu, WATANABE Keiichi, TAKAHASHI Yasuji

      More details

    Grant amount:\4420000 ( Direct Cost: \3400000 、 Indirect Cost:\1020000 )

    To study norm structure of Banach spaces, it is important of considering the form of unit sphere of the space. Many mathematical results are dependent on the sphere. To do this, we have several geometrical constants of Banach spaces, for example, von Neumann-Jordan constant, James constant and so on. In this research, we calculate the geometrical constant of absolute normalized space R^2. In particular, we calculate the James constant of extreme absolute normalized norms on R^2.
    On the other hand, we continued to study the refinement of sharp triangle inequalities. At first, we show another proof of sharp triangle inequality and we have the equality conditions of the inequalities. Further, we succeeded a generalization of the operator version of Dunkl-Williams inequality and so on.

    researchmap

  • Study on algebraic properties of maps between Banach algebras which preserve topological quantities

    Grant number:19540169

    2007 - 2009

    System name:Grants-in-Aid for Scientific Research

    Research category:Grant-in-Aid for Scientific Research (C)

    Awarding organization:Japan Society for the Promotion of Science

    HATORI Osamu, MIURA Takeshi, TAKAHASI Sin-ei, IZUCHI Keiji, SAITO Kichisuke, WATANABE Keiichi

      More details

    Grant amount:\4160000 ( Direct Cost: \3200000 、 Indirect Cost:\960000 )

    researchmap

  • The form of unit balls and the constants of Banach spaces and their applications

    Grant number:18540164

    2006 - 2007

    System name:Grants-in-Aid for Scientific Research

    Research category:Grant-in-Aid for Scientific Research (C)

    Awarding organization:Japan Society for the Promotion of Science

    SAITO Kichi-suke, KATO Mikio, TAKAHASHI Yasuji, HATORI Osamu, WATANABE Keiichi

      More details

    Grant amount:\4010000 ( Direct Cost: \3500000 、 Indirect Cost:\510000 )

    The form of unit balls of Banach spaces is an important and useful object in the every branch of Mathematics and has many applications. The study is deeply concerned with norm inequalities and the geometrical constant of Banach spaces.
    At first, we showed the refinement of triangle inequality and the reverse inequality. As an application, we characterized the uniformly nonsquareness which is the important notion of the geometry of Banach spaces. The results were appeared in Math. Inequal. Appl. and J. Math. Anal. Appl.
    Next we improved the theory of absolute normed spaces. Saito and Kato introduced the new notion of direct sums of Banach spaces. Using the direct sums of Banach spaces, Mitani and Saito presented the characterizations of important geometrical notions of Banach spaces, for example, uniform convexity, B-convexity, J-convexity and so on. The results appeared J. Math. Anal. Appl. and Banach J. Math.
    Finally, the James constant of two dimensional Lorentz spaces was completely calculated by Mitani, Saito and Suzuki which was appeared in J. Math. Anal. Appl..

    researchmap

  • Research on algebraic equations with coefficients in Banach algebras

    Grant number:17540151

    2005 - 2006

    System name:Grants-in-Aid for Scientific Research

    Research category:Grant-in-Aid for Scientific Research (C)

    Awarding organization:Japan Society for the Promotion of Science

    HATORI Osamu, MIURA Takeshi, TAKAHASI Sin-Ei, IZHUCHI Kei Ji, SAITO Kichi-Suke, WATANABE Keiichi

      More details

    Grant amount:\3300000 ( Direct Cost: \3300000 )

    Algebraic structure of commutative Banach algebra and thier maximal ideal spaces are related each other. To investigate the spectrum of the algebra element is important for the study of algebraic structure including of algebraically closedness of the Banach algebra C(X) of all complex-valued continuous functions on a given compact Hausdorff space X. Thus it is important to study spectrum-preserving maps between two Banach algebras for the research on algebraic structure of C(X). We have proved several results on spectrum-preserving maps between commutative Banach algebras without assuming linearity on the maps. We investigate the existence of n-th root in the abstract sense, which was introduced by Karahanjan, for COO, and we proved the condition is equivalent for algebraically closedness if X is locally connected or first countable. We show an example of the map T which is not linear nor multiplicative while the norm of TfTg coincides with the norm of fg for every element f and g in C(X) for the case where C(X) is square-root closed at the first time, and Finally reduce the condition on the square-root closedness. We study the maps T such that the norm of TfTg+1 coincides with the norm of fg+1 for every f and g and show that T is linear and multiplicative in certain cases. This research is not complete but give new and interesting feature. We prove a Takesaki duality theorem for Arveson's spectral subspaces if a locally compact abelian group acts on the von Neumann algebra.

    researchmap

  • Several constants of Banach spaces and its application

    Grant number:16540142

    2004 - 2005

    System name:Grants-in-Aid for Scientific Research

    Research category:Grant-in-Aid for Scientific Research (C)

    Awarding organization:Japan Society for the Promotion of Science

    SAITO Kichi-suke, KATO Mikio, TAKAHASHI Yasuji, HATORI Osamu, WATANABE Keiichi

      More details

    Grant amount:\3700000 ( Direct Cost: \3700000 )

    The geometry of Banach space is an important and useful object in the every branch of Mathematics and has many applications. In particular, the form of the unit ball is important. From this, many geometrical notions of Banach spaces are arised. In this research, we study various constants of Banach spaces, for example, von Neumann-Jordan constant, James constant and so on. In particular, we studied the followings results in this study.
    (1) We considered Banach spaces defined by absolute norms and calculated the constants of special Banach spaces.
    An application, we studied the geometrical structure of Banach spaces.
    (2) We introduced the notion of ψ-direct sums of Banach spaces and we showed the necessary and sufficient conditions that the space is smooth and uniform smooth.
    (3) We in part calculated the James constant of 2-dimensional Lorentz space.
    (4) We characterized the uniform nonsquareness of ψ-direct sum of two Banach spaces.

    researchmap

  • Research on automatic linearities for ring homomorphisms on commutative Banach algebras

    Grant number:14540161

    2002 - 2003

    System name:Grants-in-Aid for Scientific Research

    Research category:Grant-in-Aid for Scientific Research (C)

    Awarding organization:Japan Society for the Promotion of Science

    HATORI Osamu, WATANABE Keiichi, SAITO Kichi-suke, IZUCHI Keiji, MIURA Takeshi, TAKAHASI Sin-ei

      More details

    Grant amount:\3200000 ( Direct Cost: \3200000 )

    Although it is natural in considering the map on a Banach ring to consider the map(homomorphism) which saves three operations, the ring homomorphism which does not assume preservation of scalar multiplication is sometimes often linear automatically. It considered what case aring homomorphism would turn into an linear map automatically. An representation theorem of the ring homomorphism on a commutative Banach algebra was proved. When the conditions which many commutative Banach algebras fulfill were assumed, it was shown that a ring homomorphism can be represented using the continuation map on the maximum ideal space and the ring homomorphism on a complex number field, and it gave that the ring homomorphism on commutative Banach algebras which contain an element whose spectrum is large using this turned into a linear map. It was shown that especially the ring homomorphism on a disk algebra is complex-linear or conjugate-complex linear, if the non-constant function is contained in the range. Moreover, a necessary and sufficient condition for a Banach algebra to be of a finite dimension was given using the language of the Banach algebra-valued simultaneous polynomial. Among the composition operators on the Banach algebra of all bounded analytic functions on the unit disk we considered the both cases that a given composition operator is isolated and in an essential component. Moreover, we considered ideals of which closures are intersections of maximal ideals of the Banach algebra of all bounded analytic functions on the disk. It was shown that the ring homomorphism to a real commutative Banach algebra in a narrow sense from a real commutative Banach algebra can be represented by a continuous function of a certain kind between the maximal ideal spaces. Moreover, we considered the division problem. Moreover, we considered the closed ideal generated by one outer function. Moreover, the characterization for absolute norm on complex Euclidian space being smooth was given. The Wirtinger type inequality relevant to an elliptic differential equation and the inequality of Beesack said for relation to be in differential geometry were discussed systematically. It extended to the case of Banach space-valued function. Essential norm and Hyers-Ulam stability constant of a weighted composition operator on C (X) described completely in the language of a certain kind of the same level set.

    researchmap

  • 正則関数空間上の合成作用素のJordan型モデル理論に関する研究

    Grant number:13740092

    2001 - 2002

    System name:科学研究費助成事業

    Research category:若手研究(B)

    Awarding organization:日本学術振興会

    渡邉 恵一

      More details

    Grant amount:\2400000 ( Direct Cost: \2400000 )

    有限次元空間上の線形作用素は行列として表現され,Jordan標準形の理論は最も基本的で重要なものである.以下,作用素は全て可算無限次元Hilbert空間上の有界線形作用素を意味するものとする.作用素は,有限次元の場合より遥かに複雑な現象とかかわっている.有界な作用素はノルムで割り算すると縮小作用素となり,dilation理論等によって深く研究されているが,Jordan標準形の理論に相当する程の解明は,幾つかの特別なクラスを除いては,遠く達成されていない.
    一方,具体的な空間の上で具体的に構成される作用素は,構成法に即して研究することができるが,その最も自然で興味深いものの一つは,複素平面の開単位円板上の正則関数をシンボルとする合成作用素である.このとき,合成作用素をノルムで割って縮小作用素にしたものの完全非ユニタリ部分がいわゆるクラスC_0に属するためのシンボルの条件を明らかにし,その時のJordanモデルをシンボルの言葉で明示的に求めることが目的であった.ここで完全非ユニタリな縮小作用素がクラスC_0とは,開単位円板上のある有界正則関数によるSz.Nazy-Foiasのカルキュラスが0となることである.
    クラスC_0と関連したクラスとしてalgebraicがある.これはある多項式に"代入"すると0となるような作用素のクラスである。上記目的から,複素平面の連結開集合上の荷重合成作用素がalgebraicとなる必要十分条件をシンボルの言葉で求めるという問題が派生した.その条件を,合成と荷重の2つのシンボルの言葉で完全に記述することが出来,その最小多項式も決定された.

    researchmap

  • Von Neumann-Jordan constant of Banach spaces and its application

    Grant number:12640160

    2000 - 2001

    System name:Grants-in-Aid for Scientific Research

    Research category:Grant-in-Aid for Scientific Research (C)

    Awarding organization:Japan Society for the Promotion of Science

    SAITO Kichi-suke, WATANABE Keiichi, TAKAHASHI Yasuji, KATO Mikio, SUZUKI Tomonari

      More details

    Grant amount:\3600000 ( Direct Cost: \3600000 )

    The study of the Banach space theory is an important and useful object in the every branch of Mathematics and has the many application. In this research, we study, the von Neumann-Jordan constant of Banach spaces, in particular, finite dimensional Banach spaces. At first, for 2-dimensional Banach space, we show that there is a one-to-one correspondence between the set of all normalized absolute norms and the set of special class of convex functions on [0,1]. We calculate or estimate the von Neumann-Jordan constant of 2-dimensional Banach spaces using the convex function. Further, we study the geometrical structure of Banach spaces using the corresponding convex functions. Moreover, we extend these results to the finite dimensional Banach spaces. We continue to extend them to the infinite Banach spaces, in particular, sequence spaces with absolute norm.

    researchmap

  • Research on operating functions on function spaces

    Grant number:11640157

    1999 - 2000

    System name:Grants-in-Aid for Scientific Research

    Research category:Grant-in-Aid for Scientific Research (C)

    Awarding organization:Japan Society for the Promotion of Science

    HATORI Osamu, WATANABE Keiichi, SAITO Kichi-suke, IZUCHI Keiji

      More details

    Grant amount:\3400000 ( Direct Cost: \3400000 )

    We gave a sufficient conditons for the greatest regular subalgebra and the Apostol algebra (the set of all decomposable multiplication operators) of semi-simple commutative Banach algebras coincide with each other in terms of the maximal ideal spaces. As an application, we investigated stuructures of subalgebras of certain Fourier multipliers which consists of operators with natural spectra. In a special case with typical operating functions, we showed similar phenomenun for certain function spaces. We gave a sufficient condition for the existence of weak projections from commutative C^*-algebras into its subalgebra. We investigated structures of BKW operators on certain function spaces including of the disk algebra. We also characterized BKW operators on the algebara of all real valued continuous functions on the compact intervals under certain additional conditions.
    We investigated weak products of Blaschke products, and solved a problem of Gorkin and Mortini on prime ideals. We characterized codimension 1 isometries on the Douglas algebras. We characterized the maximal ideal space of commutative C^*-algebra in which every element is the squareof another in case that the maximal ideal space is locally connected. We studied ring homomorphisms on commutative Banach algebras and in the spacial cases, we characterized in terms of mapping on the maximal ideal spaces and ring homomorphisms on the complex number field. As an application of the result we proved automatic linearity results for ring homomorphism on certain semi-simple Commutative Banach algebras. In particular, we proved linearity for ring homomorphisms on the disk algebras whose image contains non-constant functions.

    researchmap

  • 非可換L^p空間上の等距離作用素の構造の研究

    Grant number:11740107

    1999 - 2000

    System name:科学研究費助成事業

    Research category:奨励研究(A)

    Awarding organization:日本学術振興会

    渡邉 恵一

      More details

    Grant amount:\2100000 ( Direct Cost: \2100000 )

    1<p<∞,p≠2とし,M_1,M_2を任意のvon Neumann環,φ_0,ψ_0をそれぞれの上の忠実正規半有限荷重,L^p(M_1;φ_0),L^p(M_2;ψ_0)をHaagerupの構成法による非可換L^p空間,TをL^p(M_1;φ_0)からL^p(M_2;ψ_0)への全射線型等距離作用素とする.Tから,前双対空間の間に写像γ:(M_1)_*→(M_2)_*が自然に誘導され,もしγが線型であることを証明できれば,Tの構造が十分に述べられることが,すでに分かっていた.γの線型性を調べるため,まず連続性を調べる必要がある.M_1がσ-有限測度空間(X,〓,μ)による可換von Neumann環L^∞(X,〓,μ)の場合,γの連続性は,ある写像π:L^1(X,〓,μ)→L^p(X,〓,μ)の連続性に帰着され,前年度に次のことが明らかになっていた:
    (1)πはL^1(X,〓,μ)で連続である.
    (2)‖π(f)-π(g)‖_p【less than or equal】C‖f-g‖_1,f,g∈L^1(X,〓μ),を満たすような正の定数Cは存在しない.
    今年度はM_1がHilbert空間H上の有界線型作用素全体のなすvon Neumann環B(H)の場合,γの連続性を研究した.得られた新たな知見等の成果は次のとおり:
    1可換の場合と類似の点として,Schattenのp-イデアルをC_pと表わすとき,問題は次のような写像ρ:C_1→C_pの連続性に帰着する.
    ρ(a)=u_a|a|^<1/p>,a∈C_1
    ただし,a=u_a|a|は極分解を表わす.
    2Hが有限次元の場合でも,可換の場合の手法では,ρの連続性を証明することは困難である.その理由は,aを動かしたとき,u_aの部分が可換の場合より遥かに複雑に振舞う余地があるためである.
    3しかし,同様の結論は成立すると予想され,マジョリゼーション理論で用いられる外積代数によるコンパクト作用素の特異値の解析の手法を試みる段階である.

    researchmap

  • The structure of Hilbert modules over operator algebras and its application

    Grant number:09640165

    1997 - 1998

    System name:Grants-in-Aid for Scientific Research

    Research category:Grant-in-Aid for Scientific Research (C)

    Awarding organization:Japan Society for the Promotion of Science

    SAITO Kichi-suke, WATANABE Keiichi, HATORI Osamu, SEIKIGAWA Kouei, TANAKA Kensuke, IZUCHI Keiji

      More details

    Grant amount:\3000000 ( Direct Cost: \3000000 )

    In the theory of operator algebras and operator theory, the structure of invariant subspaces is considered as the notion of Hilbert modules over function algebras. At first, we deeply studied the theory of Hilbert module over function algbras by Douglas-Paulsen. After that, we investigated the theory of Hubert modules over operator algebras. In particular, we studied the stucture of subdiagonal algebras which are important of nonself-adjoint operator algebras. Applying the Tomita-Takesaki theory, we showed that every maximal subdiagonal algebra is always invariant with respect to the modular automorphisms. As the corollary, we showed that every subdiagonal algebra is a nest algebra with the atomic nest. Further, we considered the factorization theorem of operators around maximal subdiagonal algebras as the generalization of inner-outer factorization in function algebras. In particular, the universal factorization property is not alway valid. However, every maximal subdiagonal algebra has the partial factorization property.
    On the other hand, from the viewpoint of function algebras, we studied the structure of invariant subspaces of L^2 (T^2), the property of commutators and so on. Further, we applied the optimization theory and infomation theory. We had some results about these topics.

    researchmap

  • Research on operators with natural spectrum

    Grant number:09640166

    1997 - 1998

    System name:Grants-in-Aid for Scientific Research

    Research category:Grant-in-Aid for Scientific Research (C)

    Awarding organization:Japan Society for the Promotion of Science

    HATORI Osamu, WATANABE Keiichi, SAITO Kichi-suke, IZUCHI Keiji

      More details

    Grant amount:\2900000 ( Direct Cost: \2900000 )

    We gave a sufficient condition for operating functions defined on a certain Banach function space to be only Lipschitz functions. Operating functions on non-trivial Banach function al-gebras or spaces need not be Lipschitz, but sutisifies strong continuity property. This means implicitly that it is hard to characterize the Gelfand space for a Banach function algebra in terms of operating functions.
    Let M(G) be the measure algebra on a non-discrete locally compact abelian group G and NS(G) denote the set of all measures in M(G) with natura1 spectrum. Then, NS(G) is not closed under addition and NS(G) + L^1(G) = M(G) holds if G is not compact. Let M_0(G) be a closed subalgebra of M(G) which consisit of all measurs whose Fuorier-Stieltjes transforms vanish at infinity and NS_0(G) denotes the subset of M_0(G) whose element have natura1 spectra. If G is compact NS_0(G) coincides with the Apostol algebra of M_0(G), which is not the case for non-compact G.There exists a measure mu in NS(G) such that mu is not decomposable as an operator on L^1(G). In particular, NS(G)+ NS(G)+ NS(G) = M(G) holds.
    The Apostol algebra of a Douglas algebra coincides with the algebra of all Q-continuous functions. Let H^* be the algebra of all bounded analytic functions on the open unit disk. Then NSH^*+ NSH^* = H^* holds, thus NSH^* is not closed under addition and it is rather large subset of H^*.

    researchmap

  • 多変数Hardy空間上のToeplitz型作用素と不変部分空間の相互関係

    Grant number:08640183

    1996

    System name:科学研究費助成事業

    Research category:基盤研究(C)

    Awarding organization:日本学術振興会

    泉池 敬司, 羽鳥 理, 渡辺 恵一, 磯貝 英一, 寺沢 達雄, 斎藤 吉助

      More details

    Grant amount:\2200000 ( Direct Cost: \2200000 )

    1)研究代表者は作用素論とハ-ディ空間の不変部分空間について,はば広く研究を行なった。トーラス上ではある種の作用素に関係する不変部分空間を確定し,n-調和関数のブルゲン環を決定した。またコロフキンの定理を満たすいくつかの作用素を決定した。特にQC-関数に対して点列コロフキンの定理が成立することを示した。
    2)磯貝は信頼係数と区間幅が与えられた条件の下で,母数の信頼を間を構成し,その被覆確確率収束の速さを求めた。
    3)渡辺は非可換L^P空間の間の線型等長作用素は,全射かつ*-保存ならば,自然に定まるJordan*-同型を用いて記述できることを示した。
    4)羽鳥は自然なスペクトルをもつラディカルに入らない測度の存在を示し,LausenとNeumannの問題を解決し,また可換バナッハ環の最大正則部分環とアポストル環が一致するための十分条件を与えた。

    researchmap

  • 作用素環の手法による作用素と不変部分空間の研究

    Grant number:08640182

    1996

    System name:科学研究費助成事業

    Research category:基盤研究(C)

    Awarding organization:日本学術振興会

    斎藤 吉助, 渡辺 恵一, 羽鳥 理, 関川 浩永, 田中 謙輔, 泉池 敬司

      More details

    Grant amount:\2200000 ( Direct Cost: \2200000 )

    自己共役でない作用素環の構造研究は、現在までに、不変部分空間の問題や正規でない作用素の構造研究と関連して、多くの研究者によってなされてきた。作用素論における問題を解決させるために、自己共役でない作用素環の構造を調べることは重要であり、その研究に重点をおいて研究した。自己共役でない作用素環は、Arvesonにより作用素環の解析性の研究として知られるsubdiagonal環の構造に着目して、今までに知られている結果、例えば、不変部分空間の構造理論、分解定理、極大性などについて整理することから始めた。得られた結果として、Nest環とsubdiagonal環の関係、例えば、pureの概念を定義しsubdiagonal環がpureであることはある特殊なNest環になる為の必要十分条件になることを示した。また、subdiagonal環の極大性の問題において、すべてのσ-弱閉subdiagonal環はいつも極大か?という問題を考察し、modular自己同型群で不変という結果を示した。この結果の応用として多くの発展が今後期待される。
    また、L^2(T^2)の不変部分空間のzw-不変部分空間としての形の決定問題、及び、不変部分空間と自己共役な交換子との関係、L^2(T^2)におけるBourgain環についての結果、非可換積分論の構造についての結果などを得ている。更に、凸解析における最適化理論への応用及び4次元多様体の構造との関連などについて考察した。
    今後、作用素論の不変部分空間の理論と自己共役でないでない作用素環の構造の更なる発展が期待される。

    researchmap

  • 非可換積分論と非可換次元論の研究

    Grant number:07740096

    1995

    System name:科学研究費助成事業

    Research category:奨励研究(A)

    Awarding organization:日本学術振興会

    渡邊 恵一

      More details

    Grant amount:\1000000 ( Direct Cost: \1000000 )

    非自己共役作用素環の非可換次元の計算においては,非可換積分論のさらなる深化が必要であるとの中間的結論に達し,主として,非可換L^P空間の間の等距離線型作用素の構造定理に取り組んだ。
    1<P<∞,P≠2とする。(半有限とは限らない)任意の2つのvon Neumann環M_1,M_2に対して,Tを非可換L^P空間L^P(M_1)からL^P(M_2)への等距離作用素とする。M_1,M_2がσ-有限,Tが*-保存かつ全射ならば,M_1からM_2へのJordan*-同型Jが存在する事が,平成4年度の研究までに示されていた。さらに,はじめのTが正値的ならば,それはJの拡張と,stateの変更に関連した自然な*-同型との合成に他ならない事が,平成6年度の研究で示されていた。
    報告者は,TがM_1,M_2の前双対空間の間の直交同型写像に関して知られていた定理を応用して,M_1,M_2のσ-有限性やTの*-保存性および全射性無しに,Jが存在する事を証明した。さらに,はじめのTが*-保存かつ全射ならば,それはJの拡張と,weightの変更に関連した自然な*-同型との合成に,M_2の中心的自己共役ユニタリ元を掛ける写像に他ならない事を証明した。
    このことは,数列空間l^P上の全射等距離作用素が,列の並べかえと絶対値1のスカラー列倍の合成に限るという有名なBanachの定理を,von Neumann環の文脈で完全に一般残された部分は,Tの*-保存性,全射性の仮定を取り除く事である。

    researchmap

  • 非可換積分論と非可換次元論の研究

    Grant number:06740105

    1994

    System name:科学研究費助成事業

    Research category:奨励研究(A)

    Awarding organization:日本学術振興会

    渡邉 恵一

      More details

    Grant amount:\900000 ( Direct Cost: \900000 )

    非自己共役作用素環の非可換次元の計算においては,非可換積分論のさらなる深化が必要であるとの結論に達し,主として,非可換L^p空間の間の等距離線型作用素の構造定理に取り組んだ。
    1<p<∞,p≠2とする。σ-有限な(半有限とは限らない)任意の2つのvon Neumann環M_1,M_2に対して,Tを非可換L^p空間L^p(M_1)からL^p(M_2)への等距離作用素とする。Tが*-保存かつ全射ならば,M_1からM_2へのJordan*-同型Jが存在する事が,平成4年度の研究までに示されていた。Jの拡張と,stateの変更に関連した自然な*-同型の合成は,L^p(M_1)からL^p(M_2)への標準的な等距離作用素となるが,はじめのTとの関係は不明なままであった。
    報告者は,もしTが正値的ならば,M_1,M_2の前双対空間の間に確率測度に類似した写像を引き起こす事に注意し,von Neumann環の射影束上の確率測度に関して知られていた定理を応用して,上記の写像が加法的である事を示し,最後にTは標準的な等距離作用素そのものである事を証明した。
    このことは,数列空間l^p上の全射等距離作用素が,列の並べかえと絶対値1のスカラー列倍の合成に限るという有名なBanachの定理を,von Neumann環の文脈で完全に一般化する問題の,おそらくは最も本質的な部分の解決である。
    残された部分は,Tの正値性,全射性,von Neumann環のσ-有限性の仮定を取り除く事である。

    researchmap

  • 非可換積分論と対称ノルム両側加群の研究

    Grant number:04740070

    1992

    System name:科学研究費助成事業

    Research category:奨励研究(A)

    Awarding organization:日本学術振興会

    渡邉 恵一

      More details

    Grant amount:\1000000 ( Direct Cost: \1000000 )

    researchmap

  • 微分可能多様体上の幾何学

    Grant number:01540024

    1989

    System name:科学研究費助成事業

    Research category:一般研究(C)

    Awarding organization:日本学術振興会

    関川 浩永, 渡辺 恵一, 渡辺 誠治, 斉藤 吉助, 田中 謙輔, 渡部 剛

      More details

    Grant amount:\2100000 ( Direct Cost: \2100000 )

    今年度、主として次の5つの主題について研究した。
    (1)コンパクト、アインシュタイン概ケ-ラ-多様体の積分可能性に関するGoldbergの予想、および定正則断面曲率をもったコンパクト、エルミ-ト曲面の分類について。
    (2)ある幾何学的条件を満たす局所側地対称変換を許容するリ-マン多様体の構造を調べること。
    (3)aspherical多様体のト-ラス作用について調べること。
    (4)情報幾何学における最適化問題の研究。
    (5)非可換微分幾何学における作用素環論的基礎づけに関する研究
    (1)Goldbergの予想については、スカラ-曲率が非負の場合には、肯定的てであることを示しているが、4次元の場合は、アインシュタインかつK-アインシュタインであるという仮定の下で、スカラ-曲率に関する制限を除けることを示している。エルミ-ト接続に関して定正則断面曲率をもったコンパクトエルミ-ト多様体の構造(例えば、その多重種数等)についてはA.Balas、P.Gauduchon等の研究があるが、対応する研究をリ-マン接続に関して定正則断面曲率をもったエルミ-ト曲面に対して行ない、例えば、非正定正則断面曲率をもったコンパクトエルミ-ト曲面はケ-ラ-曲面となることを示している。(2)については、あるsymmetryテンソルによって定義される局所側地対称変換が調和写像となるようなリ-マン多様体は局所S-regular多様体となることを示している。(3)については4次元aspherical多様体でS^1上のファイバ-空間となるものの極大ト-ラス作用について考えている。(4)についてはあるダイナミック・ゲ-ムにおけるある最適化問題について、また(5)に関しては、非可換L^P-空間や、Toeplitz作用素の性質について、いくつかの結果を得ている。

    researchmap

  • structure theory of bounded linear operators on Hilbert spaces

      More details

    Grant type:Competitive

    researchmap

  • Hilbert 空間上の有界線型作用素の構造理論

      More details

    Grant type:Competitive

    researchmap

▶ display all

 

Teaching Experience

  • 数理解析特別講義

    2024
    Institution name:新潟大学

  • 安全教育

    2022
    Institution name:新潟大学

  • 理学基礎演習

    2022
    -
    2023
    Institution name:新潟大学

  • 数学基礎A1

    2022
    Institution name:新潟大学

  • 数学基礎A2

    2022
    Institution name:新潟大学

  • 自然科学総論I

    2022
    Institution name:新潟大学

  • 理学スタディ・スキルズ

    2022
    Institution name:新潟大学

  • 先端科学技術総論

    2021
    Institution name:新潟大学

  • 実解析学B

    2020
    Institution name:新潟大学

  • 実解析学A

    2020
    Institution name:新潟大学

  • 総合力アクティブ・ラーニング

    2019
    Institution name:新潟大学

  • 関数解析学A

    2017
    Institution name:新潟大学

  • 微分積分学IB

    2017
    Institution name:新潟大学

  • 関数解析学B

    2017
    Institution name:新潟大学

  • 微分積分学IA

    2017
    Institution name:新潟大学

  • 数学基礎A1

    2017
    -
    2022
    Institution name:新潟大学

  • 理学スタディ・スキルズ

    2017
    -
    2022
    Institution name:新潟大学

  • 数学基礎A2

    2017
    -
    2022
    Institution name:新潟大学

  • 数学基礎演習b

    2017
    -
    2019
    Institution name:新潟大学

  • 数学基礎演習a

    2017
    -
    2019
    Institution name:新潟大学

  • 数学演習A

    2017
    -
    2018
    Institution name:新潟大学

  • 数学演習B

    2017
    -
    2018
    Institution name:新潟大学

  • 作用素環論

    2015
    Institution name:新潟大学

  • 関数解析特論

    2015
    Institution name:新潟大学

  • 関数解析学

    2015
    -
    2016
    Institution name:新潟大学

  • 数理科学文献詳読Ⅱ(数学)

    2014
    -
    2015
    Institution name:新潟大学

  • 数理物質科学特定研究Ⅱ(数学)

    2014
    -
    2015
    Institution name:新潟大学

  • 数理科学セミナーⅡ(数学)

    2014
    -
    2015
    Institution name:新潟大学

  • 数理科学セミナーⅠ(数学)

    2014
    Institution name:新潟大学

  • 数理科学文献詳読Ⅰ(数学)

    2014
    Institution name:新潟大学

  • 数理科学研究発表演習〔中間発表〕(数学)

    2014
    Institution name:新潟大学

  • 基礎ゼミIII

    2014
    Institution name:新潟大学

  • 数理物質科学特定研究Ⅰ(数学)

    2013
    -
    2014
    Institution name:新潟大学

  • 数理基礎演習I

    2012
    -
    2016
    Institution name:新潟大学

  • 数理基礎演習II

    2012
    -
    2016
    Institution name:新潟大学

  • 情報基礎数学II

    2012
    Institution name:新潟大学

  • くらしと数理

    2010
    Institution name:新潟大学

  • 基礎ゼミVIII

    2010
    Institution name:新潟大学

  • 安全教育

    2010
    Institution name:新潟大学

  • 基礎数学A I

    2009
    -
    2016
    Institution name:新潟大学

  • 微分積分学I

    2009
    -
    2016
    Institution name:新潟大学

  • 基礎数学演習I

    2009
    -
    2011
    Institution name:新潟大学

  • 基礎ゼミV

    2009
    Institution name:新潟大学

  • 数学の世界

    2008
    -
    2020
    Institution name:新潟大学

  • 基礎ゼミII

    2008
    Institution name:新潟大学

  • 数学講究

    2007
    Institution name:新潟大学

  • 数学基礎A

    2007
    -
    2016
    Institution name:新潟大学

  • 作用素論

    2007
    -
    2014
    Institution name:新潟大学

  • 基礎数学A II

    2007
    -
    2014
    Institution name:新潟大学

  • 作用素構造特論

    2007
    -
    2014
    Institution name:新潟大学

  • 微分積分学II

    2007
    -
    2014
    Institution name:新潟大学

  • 基礎数学演習II

    2007
    -
    2011
    Institution name:新潟大学

  • スタディ・スキルズ(数学学習法)

    2007
    -
    2010
    Institution name:新潟大学

  • 微分積分学III

    2007
    -
    2008
    Institution name:新潟大学

▶ display all